# Migrating from previous packages ## Migrating from pytorch-transformers to transformers Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`. ### Positional order of some models' keywords inputs (`attention_mask`, `token_type_ids`...) changed To be able to use Torchscript (see #1010, #1204 and #1195) the specific order of some models **keywords inputs** (`attention_mask`, `token_type_ids`...) has been changed. If you used to call the models with keyword names for keyword arguments, e.g. `model(inputs_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)`, this should not cause any change. If you used to call the models with positional inputs for keyword arguments, e.g. `model(inputs_ids, attention_mask, token_type_ids)`, you may have to double check the exact order of input arguments. ## Migrating from pytorch-pretrained-bert Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers` ### Models always output `tuples` The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters. The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/transformers/). In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`. Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model: ```python # Let's load our model model = BertForSequenceClassification.from_pretrained('bert-base-uncased') # If you used to have this line in pytorch-pretrained-bert: loss = model(input_ids, labels=labels) # Now just use this line in transformers to extract the loss from the output tuple: outputs = model(input_ids, labels=labels) loss = outputs[0] # In transformers you can also have access to the logits: loss, logits = outputs[:2] # And even the attention weights if you configure the model to output them (and other outputs too, see the docstrings and documentation) model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True) outputs = model(input_ids, labels=labels) loss, logits, attentions = outputs ``` ### Serialization Breaking change in the `from_pretrained()`method: 1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules. 2. The additional `*inputs` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute first which can break derived model classes build based on the previous `BertForSequenceClassification` examples. More precisely, the positional arguments `*inputs` provided to `from_pretrained()` are directly forwarded the model `__init__()` method while the keyword arguments `**kwargs` (i) which match configuration class attributes are used to update said attributes (ii) which don't match any configuration class attributes are forwarded to the model `__init__()` method. Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before. Here is an example: ```python ### Let's load a model and tokenizer model = BertForSequenceClassification.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') ### Do some stuff to our model and tokenizer # Ex: add new tokens to the vocabulary and embeddings of our model tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]']) model.resize_token_embeddings(len(tokenizer)) # Train our model train(model) ### Now let's save our model and tokenizer to a directory model.save_pretrained('./my_saved_model_directory/') tokenizer.save_pretrained('./my_saved_model_directory/') ### Reload the model and the tokenizer model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/') tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/') ``` ### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences: - it only implements weights decay correction, - schedules are now externals (see below), - gradient clipping is now also external (see below). The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping. The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore. Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule: ```python # Parameters: lr = 1e-3 max_grad_norm = 1.0 num_training_steps = 1000 num_warmup_steps = 100 warmup_proportion = float(num_warmup_steps) / float(num_training_steps) # 0.1 ### Previously BertAdam optimizer was instantiated like this: optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, num_training_steps=num_training_steps) ### and used like this: for batch in train_data: loss = model(batch) loss.backward() optimizer.step() ### In Transformers, optimizer and schedules are splitted and instantiated like this: optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps) # PyTorch scheduler ### and used like this: for batch in train_data: loss = model(batch) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) # Gradient clipping is not in AdamW anymore (so you can use amp without issue) optimizer.step() scheduler.step() ```