Source code for transformers.modeling_utils

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import logging
import os
from typing import Callable, Tuple

import torch
from torch import Tensor, device, dtype, nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F

from .activations import get_activation
from .configuration_utils import PretrainedConfig
from .file_utils import (
    DUMMY_INPUTS,
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
    cached_path,
    hf_bucket_url,
    is_remote_url,
)


logger = logging.getLogger(__name__)


try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """

        def __init__(self, *args, **kwargs):
            super().__init__()

        def forward(self, input):
            return input


class ModuleUtilsMixin:
    """
    A few utilities for torch.nn.Modules, to be used as a mixin.
    """

    def num_parameters(self, only_trainable: bool = False) -> int:
        """
        Get number of (optionally, trainable) parameters in the module.
        """
        params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters()
        return sum(p.numel() for p in params)

    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
        """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
            Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero with `model.reset_memory_hooks_state()`
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

    @property
    def device(self) -> device:
        return next(self.parameters()).device

    @property
    def dtype(self) -> dtype:
        return next(self.parameters()).dtype

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
        """type: torch.Tensor -> torch.Tensor"""
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        return encoder_extended_attention_mask

    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: tuple, device: device):
        """Makes broadcastable attention mask and causal mask so that future and maked tokens are ignored.

        Arguments:
            attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to
            input_shape: tuple, shape of input_ids
            device: torch.Device, usually self.device

        Returns:
            torch.Tensor with dtype of attention_mask.dtype
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                    input_shape, attention_mask.shape
                )
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

    def get_head_mask(self, head_mask, num_hidden_layers, is_attention_chunked=False):
        """
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        attention_probs has shape bsz x n_heads x N x N
        Arguments:
            head_mask: torch.Tensor or None: has shape [num_heads] or [num_hidden_layers x num_heads]
            num_hidden_layers: int
        Returns:
             Tensor of shape shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
             or list with [None] for each layer
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
        head_mask = head_mask.to(dtype=self.dtype)  # switch to fload if need + fp16 compatibility
        return head_mask


[docs]class PreTrainedModel(nn.Module, ModuleUtilsMixin): r""" Base class for all models. :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. Class attributes (overridden by derived classes): - ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values. - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`, - ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`, - ``path``: a path (string) to the TensorFlow checkpoint. - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. """ config_class = None pretrained_model_archive_map = {} base_model_prefix = "" @property def dummy_inputs(self): """ Dummy inputs to do a forward pass in the network. Returns: torch.Tensor with dummy inputs """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config in model self.config = config @property def base_model(self): return getattr(self, self.base_model_prefix, self)
[docs] def get_input_embeddings(self): """ Returns the model's input embeddings. Returns: :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError
[docs] def set_input_embeddings(self, value): """ Set model's input embeddings Args: value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError
[docs] def get_output_embeddings(self): """ Returns the model's output embeddings. Returns: :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings
[docs] def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """ Tie or clone module weights depending of whether we are using TorchScript or not """ if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = torch.nn.functional.pad( output_embeddings.bias.data, (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings
[docs] def resize_token_embeddings(self, new_num_tokens=None): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens: (`optional`) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. Return: ``torch.nn.Embeddings`` Pointer to the input tokens Embeddings Module of the model """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed model_embeds = base_model._resize_token_embeddings(new_num_tokens) if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds
def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) return self.get_input_embeddings() def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end Args: new_num_tokens: (`optional`) int New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end If not provided or None: return the provided token Embedding Module. Return: ``torch.nn.Embeddings`` Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None """ if new_num_tokens is None: return old_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens: return old_embeddings # Build new embeddings new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) new_embeddings.to(old_embeddings.weight.device) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights num_tokens_to_copy = min(old_num_tokens, new_num_tokens) new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] return new_embeddings
[docs] def init_weights(self): """ Initialize and prunes weights if needed. """ # Initialize weights self.apply(self._init_weights) # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) # Tie weights if needed self.tie_weights()
[docs] def prune_heads(self, heads_to_prune): """ Prunes heads of the base model. Arguments: heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune)
[docs] def save_pretrained(self, save_directory): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. Arguments: save_directory: directory to which to save. """ assert os.path.isdir( save_directory ), "Saving path should be a directory where the model and configuration can be saved" # Only save the model itself if we are using distributed training model_to_save = self.module if hasattr(self, "module") else self # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, WEIGHTS_NAME) if getattr(self.config, "xla_device", False): import torch_xla.core.xla_model as xm if xm.is_master_ordinal(): # Save configuration file model_to_save.config.save_pretrained(save_directory) # xm.save takes care of saving only from master xm.save(model_to_save.state_dict(), output_model_file) else: model_to_save.config.save_pretrained(save_directory) torch.save(model_to_save.state_dict(), output_model_file) logger.info("Model weights saved in {}".format(output_model_file))
[docs] @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with ``model.train()`` The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``) model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) one of: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, or - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()` Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: # For example purposes. Not runnable. model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", False) use_cdn = kwargs.pop("use_cdn", True) # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path] elif os.path.isdir(pretrained_model_name_or_path): if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): # Load from a TF 1.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_tf` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert ( from_tf ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), use_cdn=use_cdn, ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) except EnvironmentError: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: msg = "Couldn't reach server at '{}' to download pretrained weights.".format(archive_file) else: msg = ( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url to model weight files named one of {} but " "couldn't find any such file at this path or url.".format( pretrained_model_name_or_path, ", ".join(cls.pretrained_model_archive_map.keys()), archive_file, [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME], ) ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config, *model_args, **model_kwargs) if state_dict is None and not from_tf: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: raise OSError( "Unable to load weights from pytorch checkpoint file. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from transformers import load_tf2_checkpoint_in_pytorch_model model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise else: # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) if not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) load(model_to_load, prefix=start_prefix) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys ) ) if len(unexpected_keys) > 0: logger.info( "Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys ) ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) model.tie_weights() # make sure token embedding weights are still tied if needed # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs, } return model, loading_info if hasattr(config, "xla_device") and config.xla_device: import torch_xla.core.xla_model as xm model = xm.send_cpu_data_to_device(model, xm.xla_device()) model = model.to(xm.xla_device()) return model
def prepare_inputs_for_generation(self, input_ids, **kwargs): return {"input_ids": input_ids} def prepare_logits_for_generation(self, logits, **kwargs): return logits def _use_cache(self, outputs, use_cache): """During generation, decide whether to pass the `past` variable to the next forward pass.""" if len(outputs) <= 1 or use_cache is False: return False if hasattr(self.config, "mem_len") and self.config.mem_len == 0: return False return True
[docs] def enforce_repetition_penalty_(self, lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty): """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """ for i in range(batch_size * num_beams): for previous_token in set(prev_output_tokens[i].tolist()): # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if lprobs[i, previous_token] < 0: lprobs[i, previous_token] *= repetition_penalty else: lprobs[i, previous_token] /= repetition_penalty
[docs] @torch.no_grad() def generate( self, input_ids=None, max_length=None, min_length=None, do_sample=None, early_stopping=None, num_beams=None, temperature=None, top_k=None, top_p=None, repetition_penalty=None, bad_words_ids=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, num_return_sequences=None, attention_mask=None, decoder_start_token_id=None, use_cache=None, **model_specific_kwargs ): r""" Generates sequences for models with a LM head. The method currently supports greedy decoding, beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling. Adapted in part from `Facebook's XLM beam search code`_. .. _`Facebook's XLM beam search code`: https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529 Parameters: input_ids: (`optional`) `torch.LongTensor` of shape `(batch_size, sequence_length)` The sequence used as a prompt for the generation. If `None` the method initializes it as an empty `torch.LongTensor` of shape `(1,)`. max_length: (`optional`) int The max length of the sequence to be generated. Between `min_length` and infinity. Default to 20. min_length: (`optional`) int The min length of the sequence to be generated. Between 0 and infinity. Default to 0. do_sample: (`optional`) bool If set to `False` greedy decoding is used. Otherwise sampling is used. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. early_stopping: (`optional`) bool if set to `True` beam search is stopped when at least `num_beams` sentences finished per batch. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. num_beams: (`optional`) int Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1. temperature: (`optional`) float The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. top_k: (`optional`) int The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. top_p: (`optional`) float The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. repetition_penalty: (`optional`) float The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0. pad_token_id: (`optional`) int Padding token. Default to specicic model pad_token_id or None if it does not exist. bos_token_id: (`optional`) int BOS token. Defaults to `bos_token_id` as defined in the models config. eos_token_id: (`optional`) int EOS token. Defaults to `eos_token_id` as defined in the models config. length_penalty: (`optional`) float Exponential penalty to the length. Default to 1. no_repeat_ngram_size: (`optional`) int If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once. bad_words_ids: (`optional`) list of lists of int `bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`. num_return_sequences: (`optional`) int The number of independently computed returned sequences for each element in the batch. Default to 1. attention_mask (`optional`) obj: `torch.LongTensor` of same shape as `input_ids` Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. Defaults to `None`. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_start_token_id=None: (`optional`) int If an encoder-decoder model starts decoding with a different token than BOS. Defaults to `None` and is changed to `BOS` later. use_cache: (`optional`) bool If `use_cache` is True, past key values are used to speed up decoding if applicable to model. Defaults to `True`. model_specific_kwargs: (`optional`) dict Additional model specific kwargs will be forwarded to the `forward` function of the model. Return: output: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)` sequence_length is either equal to max_length or shorter if all batches finished early due to the `eos_token_id` Examples:: tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. outputs = model.generate(max_length=40) # do greedy decoding print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3) # 3 generate sequences using by sampling for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache. input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache. input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated """ # We cannot generate if the model does not have a LM head if self.get_output_embeddings() is None: raise AttributeError( "You tried to generate sequences with a model that does not have a LM Head." "Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )" ) max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length do_sample = do_sample if do_sample is not None else self.config.do_sample early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping use_cache = use_cache if use_cache is not None else self.config.use_cache num_beams = num_beams if num_beams is not None else self.config.num_beams temperature = temperature if temperature is not None else self.config.temperature top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) if input_ids is not None: batch_size = input_ids.shape[0] # overriden by the input batch_size else: batch_size = 1 assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer." assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer." assert isinstance(do_sample, bool), "`do_sample` should be a boolean." assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean." assert isinstance(use_cache, bool), "`use_cache` should be a boolean." assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer." assert temperature > 0, "`temperature` should be strictly positive." assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer." assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1." assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1." assert input_ids is not None or ( isinstance(bos_token_id, int) and bos_token_id >= 0 ), "If input_ids is not defined, `bos_token_id` should be a positive integer." assert pad_token_id is None or ( isinstance(pad_token_id, int) and (pad_token_id >= 0) ), "`pad_token_id` should be a positive integer." assert (eos_token_id is None) or ( isinstance(eos_token_id, int) and (eos_token_id >= 0) ), "`eos_token_id` should be a positive integer." assert length_penalty > 0, "`length_penalty` should be strictly positive." assert ( isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0 ), "`no_repeat_ngram_size` should be a positive integer." assert ( isinstance(num_return_sequences, int) and num_return_sequences > 0 ), "`num_return_sequences` should be a strictly positive integer." assert ( bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list) ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated" if input_ids is None: assert isinstance(bos_token_id, int) and bos_token_id >= 0, ( "you should either supply a context to complete as `input_ids` input " "or a `bos_token_id` (integer >= 0) as a first token to start the generation." ) input_ids = torch.full( (batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device, ) else: assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)." # not allow to duplicate outputs when greedy decoding if do_sample is False: if num_beams == 1: # no_beam_search greedy generation conditions assert ( num_return_sequences == 1 ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1" else: # beam_search greedy generation conditions assert ( num_beams >= num_return_sequences ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences" # create attention mask if necessary # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140 if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids): attention_mask = input_ids.ne(pad_token_id).long() elif attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) # set pad_token_id to eos_token_id if not set. Important that this is done after # attention_mask is created if pad_token_id is None and eos_token_id is not None: logger.warning( "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id) ) pad_token_id = eos_token_id # current position and vocab size if hasattr(self.config, "vocab_size"): vocab_size = self.config.vocab_size elif ( self.config.is_encoder_decoder and hasattr(self.config, "decoder") and hasattr(self.config.decoder, "vocab_size") ): vocab_size = self.config.decoder.vocab_size # set effective batch size and effective batch multiplier according to do_sample if do_sample: effective_batch_size = batch_size * num_return_sequences effective_batch_mult = num_return_sequences else: effective_batch_size = batch_size effective_batch_mult = 1 if self.config.is_encoder_decoder: if decoder_start_token_id is None: decoder_start_token_id = bos_token_id assert ( decoder_start_token_id is not None ), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation" assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self) assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder) # get encoder and store encoder outputs encoder = self.get_encoder() encoder_outputs: tuple = encoder(input_ids, attention_mask=attention_mask) # Expand input ids if num_beams > 1 or num_return_sequences > 1 if num_return_sequences > 1 or num_beams > 1: input_ids_len = input_ids.shape[-1] input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len) attention_mask = attention_mask.unsqueeze(1).expand( batch_size, effective_batch_mult * num_beams, input_ids_len ) input_ids = input_ids.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) attention_mask = attention_mask.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) if self.config.is_encoder_decoder: # create empty decoder_input_ids input_ids = torch.full( (effective_batch_size * num_beams, 1), decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) cur_len = 1 assert ( batch_size == encoder_outputs[0].shape[0] ), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} " # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1) expanded_batch_idxs = ( torch.arange(batch_size) .view(-1, 1) .repeat(1, num_beams * effective_batch_mult) .view(-1) .to(input_ids.device) ) # expand encoder_outputs encoder_outputs = (encoder_outputs[0].index_select(0, expanded_batch_idxs), *encoder_outputs[1:]) else: encoder_outputs = None cur_len = input_ids.shape[-1] if num_beams > 1: output = self._generate_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, early_stopping=early_stopping, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, decoder_start_token_id=decoder_start_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, num_return_sequences=num_return_sequences, length_penalty=length_penalty, num_beams=num_beams, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, model_specific_kwargs=model_specific_kwargs, ) else: output = self._generate_no_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, decoder_start_token_id=decoder_start_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, model_specific_kwargs=model_specific_kwargs, ) return output
def _generate_no_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, decoder_start_token_id, batch_size, encoder_outputs, attention_mask, use_cache, model_specific_kwargs, ): """ Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated independantly. """ # length of generated sentences / unfinished sentences unfinished_sents = input_ids.new(batch_size).fill_(1) sent_lengths = input_ids.new(batch_size).fill_(max_length) past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_specific_kwargs ) outputs = self(**model_inputs) next_token_logits = outputs[0][:, -1, :] # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: self.enforce_repetition_penalty_(next_token_logits, batch_size, 1, input_ids, repetition_penalty) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len) for batch_idx in range(batch_size): next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf") if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) for batch_idx in range(batch_size): next_token_logits[batch_idx, banned_tokens[batch_idx]] = -float("inf") # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: next_token_logits[:, eos_token_id] = -float("inf") if do_sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # Top-p/top-k filtering next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) # Sample probs = F.softmax(next_token_logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1).squeeze(1) else: # Greedy decoding next_token = torch.argmax(next_token_logits, dim=-1) # update generations and finished sentences if eos_token_id is not None: # pad finished sentences if eos_token_id exist tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents) else: tokens_to_add = next_token input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) if eos_token_id is not None: eos_in_sents = tokens_to_add == eos_token_id # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool() sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len + 1) # unfinished_sents is set to zero if eos in sentence unfinished_sents.mul_((~eos_in_sents).long()) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sents.max() == 0: break # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) cur_len = cur_len + 1 # if there are different sentences lengths in the batch, some batches have to be padded if sent_lengths.min().item() != sent_lengths.max().item(): assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths" # finished sents are filled with pad_token decoded = input_ids.new(batch_size, sent_lengths.max().item()).fill_(pad_token_id) else: decoded = input_ids for hypo_idx, hypo in enumerate(input_ids): decoded[hypo_idx, : sent_lengths[hypo_idx]] = hypo[: sent_lengths[hypo_idx]] return decoded def _generate_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, early_stopping, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, decoder_start_token_id, batch_size, num_return_sequences, length_penalty, num_beams, vocab_size, encoder_outputs, attention_mask, use_cache, model_specific_kwargs, ): """ Generate sequences for each example with beam search. """ # generated hypotheses generated_hyps = [ BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping) for _ in range(batch_size) ] # scores for each sentence in the beam beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times if do_sample is False: beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,) # cache compute states past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models # done sentences done = [False for _ in range(batch_size)] while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_specific_kwargs ) outputs = self(**model_inputs) # (batch_size * num_beams, cur_len, vocab_size) next_token_logits = outputs[0][:, -1, :] # (batch_size * num_beams, vocab_size) # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: self.enforce_repetition_penalty_( next_token_logits, batch_size, num_beams, input_ids, repetition_penalty, ) if temperature != 1.0: next_token_logits = next_token_logits / temperature if self.config.is_encoder_decoder and do_sample is False: # TODO (PVP) still a bit hacky here - there might be a better solution next_token_logits = self.prepare_logits_for_generation( next_token_logits, cur_len=cur_len, max_length=max_length ) scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: scores[:, eos_token_id] = -float("inf") if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams num_batch_hypotheses = batch_size * num_beams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_batch_tokens = calc_banned_ngram_tokens( input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) for i, banned_tokens in enumerate(banned_tokens): scores[i, banned_tokens] = -float("inf") assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format( scores.shape, (batch_size * num_beams, vocab_size) ) if do_sample: _scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # Top-p/top-k filtering _scores = top_k_top_p_filtering( _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2 ) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together to sample from all beam_idxs _scores = _scores.contiguous().view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search) probs = F.softmax(_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=2 * num_beams) # (batch_size, num_beams * 2) # Compute next scores next_scores = torch.gather(_scores, -1, next_tokens) # (batch_size, num_beams * 2) # sort the sampled vector to make sure that the first num_beams samples are the best next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, next_scores_indices) # (batch_size, num_beams * 2) else: next_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis accross beams) next_scores = next_scores.view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True) assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams) # next batch beam content next_batch_beam = [] # for each sentence for batch_idx in range(batch_size): # if we are done with this sentence if done[batch_idx]: assert ( len(generated_hyps[batch_idx]) >= num_beams ), "Batch can only be done if at least {} beams have been generated".format(num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch continue # next sentence beam content next_sent_beam = [] # next tokens for this sentence for beam_token_rank, (beam_token_id, beam_token_score) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx]) ): # get beam and token IDs beam_id = beam_token_id // vocab_size token_id = beam_token_id % vocab_size effective_beam_id = batch_idx * num_beams + beam_id # add to generated hypotheses if end of sentence or last iteration if (eos_token_id is not None) and (token_id.item() == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams if is_beam_token_worse_than_top_num_beams: continue generated_hyps[batch_idx].add( input_ids[effective_beam_id].clone(), beam_token_score.item(), ) else: # add next predicted token if it is not eos_token next_sent_beam.append((beam_token_score, token_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == num_beams: break # Check if were done so that we can save a pad step if all(done) done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done( next_scores[batch_idx].max().item(), cur_len=cur_len ) # update next beam content assert len(next_sent_beam) == num_beams, "Beam should always be full" next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == num_beams * (batch_idx + 1) # stop when we are done with each sentence if all(done): break # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * num_beams beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_tokens = input_ids.new([x[1] for x in next_batch_beam]) beam_idx = input_ids.new([x[2] for x in next_batch_beam]) # re-order batch input_ids = input_ids[beam_idx, :] input_ids = torch.cat([input_ids, beam_tokens.unsqueeze(1)], dim=-1) # re-order internal states if past is not None: past = self._reorder_cache(past, beam_idx) # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) # update current length cur_len = cur_len + 1 # finalize all open beam hypotheses and end to generated hypotheses for batch_idx in range(batch_size): if done[batch_idx]: continue # test that beam scores match previously calculated scores if not eos and batch_idx not done if eos_token_id is not None and all( (token_id % vocab_size).item() is not eos_token_id for token_id in next_tokens[batch_idx] ): assert torch.all( next_scores[batch_idx, :num_beams] == beam_scores.view(batch_size, num_beams)[batch_idx] ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format( next_scores[:, :num_beams][batch_idx], beam_scores.view(batch_size, num_beams)[batch_idx], ) # need to add best num_beams hypotheses to generated hyps for beam_id in range(num_beams): effective_beam_id = batch_idx * num_beams + beam_id final_score = beam_scores[effective_beam_id].item() final_tokens = input_ids[effective_beam_id] generated_hyps[batch_idx].add(final_tokens, final_score) # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch output_batch_size = batch_size if do_sample else batch_size * num_return_sequences output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences # select the best hypotheses sent_lengths = input_ids.new(output_batch_size) best = [] # retrieve best hypotheses for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0]) for j in range(output_num_return_sequences_per_batch): effective_batch_idx = output_num_return_sequences_per_batch * i + j best_hyp = sorted_hyps.pop()[1] sent_lengths[effective_batch_idx] = len(best_hyp) best.append(best_hyp) # shorter batches are filled with pad_token if sent_lengths.min().item() != sent_lengths.max().item(): assert pad_token_id is not None, "`Pad_token_id` has to be defined" sent_max_len = min(sent_lengths.max().item() + 1, max_length) decoded = input_ids.new(output_batch_size, sent_max_len).fill_(pad_token_id) # fill with hypothesis and eos_token_id if necessary for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < max_length: decoded[i, sent_lengths[i]] = eos_token_id else: # none of the hypotheses have an eos_token assert (len(hypo) == max_length for hypo in best) decoded = torch.stack(best).type(torch.long).to(next(self.parameters()).device) return decoded @staticmethod def _reorder_cache(past: Tuple, beam_idx: Tensor) -> Tuple[Tensor]: return tuple(layer_past.index_select(1, beam_idx) for layer_past in past)
def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids): banned_tokens = [] def _tokens_match(prev_tokens, tokens): if len(tokens) == 0: # if bad word tokens is just one token always ban it return True if len(tokens) > len(prev_input_ids): # if bad word tokens are longer then prev input_ids they can't be equal return False if prev_tokens[-len(tokens) :] == tokens: # if tokens match return True else: return False for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids ) if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits class BeamHypotheses(object): def __init__(self, num_beams, max_length, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.max_length = max_length - 1 # ignoring bos_token self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ score = sum_logprobs / len(hyp) ** self.length_penalty if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_scores[0][1]] self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len=None): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: if cur_len is None: cur_len = self.max_length cur_score = best_sum_logprobs / cur_len ** self.length_penalty ret = self.worst_score >= cur_score return ret class Conv1D(nn.Module): def __init__(self, nf, nx): """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) Basically works like a Linear layer but the weights are transposed """ super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class PoolerStartLogits(nn.Module): """ Compute SQuAD start_logits from sequence hidden states. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states, p_mask=None): """ Args: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` invalid position mask such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end_logits from sequence hidden states and start token hidden state. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to hidden_states hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` Mask of invalid position such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span. **cls_index**: torch.LongTensor of shape ``(batch_size,)`` position of the CLS token. If None, take the last token. note(Original repo): no dependency on end_feature so that we can obtain one single `cls_logits` for each sample """ hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Parameters: config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model. Inputs: **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)`` hidden states of sequence tokens **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span. **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the last token for the labeled span. **cls_index**: torch.LongTensor of shape ``(batch_size,)`` position of the CLS token. If None, take the last token. **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)`` Whether the question has a possible answer in the paragraph or not. **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` Mask of invalid position such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` Log probabilities for the top config.start_n_top start token possibilities (beam-search). **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` Indices for the top config.start_n_top start token possibilities (beam-search). **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) ``torch.FloatTensor`` of shape ``(batch_size,)`` Log probabilities for the ``is_impossible`` label of the answers. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) def forward( self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None, ): outputs = () start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 outputs = (total_loss,) + outputs else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits,) + outputs # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits # or (if labels are provided) (total_loss,) return outputs class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states according to various possibilities: Args of the config class: summary_type: - 'last' => [default] take the last token hidden state (like XLNet) - 'first' => take the first token hidden state (like Bert) - 'mean' => take the mean of all tokens hidden states - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) - 'attn' => Not implemented now, use multi-head attention summary_use_proj: Add a projection after the vector extraction summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. summary_activation: 'tanh' or another string => add an activation to the output, Other => no activation. Default summary_first_dropout: Add a dropout before the projection and activation summary_last_dropout: Add a dropout after the projection and activation """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = (get_activation(activation_string) if activation_string else Identity()) self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward(self, hidden_states, cls_index=None): """ hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer. cls_index: [optional] position of the classification token if summary_type == 'cls_index', shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. if summary_type == 'cls_index' and cls_index is None: we take the last token of the sequence as classification token """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long,) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor: """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + padding_idx def prune_linear_layer(layer, index, dim=0): """ Prune a linear layer (a model parameters) to keep only entries in index. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_conv1d_layer(layer, index, dim=1): """ Prune a Conv1D layer (a model parameters) to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer(layer, index, dim=None): """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index. Return the pruned layer as a new layer with requires_grad=True. Used to remove heads. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError("Can't prune layer of class {}".format(layer.__class__))
[docs]def apply_chunking_to_forward( chunk_size: int, chunk_dim: int, forward_fn: Callable[..., torch.Tensor], *input_tensors ) -> torch.Tensor: """ This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory. If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as not applying it. Args: chunk_size: int - the chunk size of a chunked tensor. `num_chunks` = `len(input_tensors[0]) / chunk_size` chunk_dim: int - the dimension over which the input_tensors should be chunked forward_fn: fn - the forward fn of the model input_tensors: tuple(torch.Tensor) - the input tensors of `forward_fn` which are chunked Returns: a Tensor with the same shape the foward_fn would have given if applied Examples:: # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.chunk_size_lm_head, self.seq_len_dim, self.forward_chunk, hidden_states) """ assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors) tensor_shape = input_tensors[0].shape assert all( input_tensor.shape == tensor_shape for input_tensor in input_tensors ), "All input tenors have to be of the same shape" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) assert num_args_in_forward_chunk_fn == len( input_tensors ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format( num_args_in_forward_chunk_fn, len(input_tensors) ) if chunk_size > 0: assert ( input_tensors[0].shape[chunk_dim] % chunk_size == 0 ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format( input_tensors[0][chunk_dim], chunk_size ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors)