Source code for transformers.modeling_distilbert

# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DistilBERT model
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
    and in part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import copy
import sys
from io import open

import itertools
import numpy as np

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_distilbert import DistilBertConfig
from .file_utils import add_start_docstrings

import logging
logger = logging.getLogger(__name__)


DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin"
}


### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ###
def gelu(x):
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False

class Embeddings(nn.Module):
    def __init__(self,
                 config):
        super(Embeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
        if config.sinusoidal_pos_embds:
            create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
                                         dim=config.dim,
                                         out=self.position_embeddings.weight)

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters
        ----------
        input_ids: torch.tensor(bs, max_seq_length)
            The token ids to embed.

        Outputs
        -------
        embeddings: torch.tensor(bs, max_seq_length, dim)
            The embedded tokens (plus position embeddings, no token_type embeddings)
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)                      # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)                   # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)        # (bs, max_seq_length, dim)

        embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)             # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)               # (bs, max_seq_length, dim)
        return embeddings

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, config):
        super(MultiHeadSelfAttention, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0

        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)

        self.pruned_heads = set()

    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        heads = set(heads) - self.pruned_heads
        for head in heads:
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(self, query, key, value, mask, head_mask = None):
        """
        Parameters
        ----------
        query: torch.tensor(bs, seq_length, dim)
        key: torch.tensor(bs, seq_length, dim)
        value: torch.tensor(bs, seq_length, dim)
        mask: torch.tensor(bs, seq_length)

        Outputs
        -------
        weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: torch.tensor(bs, seq_length, dim)
            Contextualized layer. Optional: only if `output_attentions=True`
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()

        dim_per_head = self.dim // self.n_heads

        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(query))           # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))             # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))           # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)                     # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2,3))          # (bs, n_heads, q_length, k_length)
        mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)   # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)        # (bs, n_heads, q_length, k_length)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = torch.matmul(weights, v)     # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)             # (bs, q_length, dim)
        context = self.out_lin(context)        # (bs, q_length, dim)

        if self.output_attentions:
            return (context, weights)
        else:
            return (context,)

class FFN(nn.Module):
    def __init__(self, config):
        super(FFN, self).__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
        assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation)
        self.activation = gelu if config.activation == 'gelu' else nn.ReLU()

    def forward(self, input):
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x

class TransformerBlock(nn.Module):
    def __init__(self, config):
        super(TransformerBlock, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

        assert config.dim % config.n_heads == 0

        self.attention = MultiHeadSelfAttention(config)
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

        self.ffn = FFN(config)
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

    def forward(self, x, attn_mask=None, head_mask=None):
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)

        Outputs
        -------
        sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            The attention weights
        ffn_output: torch.tensor(bs, seq_length, dim)
            The output of the transformer block contextualization.
        """
        # Self-Attention
        sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask)
        if self.output_attentions:
            sa_output, sa_weights = sa_output                  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
        else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples
            assert type(sa_output) == tuple
            sa_output = sa_output[0]
        sa_output = self.sa_layer_norm(sa_output + x)          # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)                             # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

        output = (ffn_output,)
        if self.output_attentions:
            output = (sa_weights,) + output
        return output


class Transformer(nn.Module):
    def __init__(self, config):
        super(Transformer, self).__init__()
        self.n_layers = config.n_layers
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

        layer = TransformerBlock(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])

    def forward(self, x, attn_mask=None, head_mask=None):
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
            Input sequence embedded.
        attn_mask: torch.tensor(bs, seq_length)
            Attention mask on the sequence.

        Outputs
        -------
        hidden_state: torch.tensor(bs, seq_length, dim)
            Sequence of hiddens states in the last (top) layer
        all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
            Tuple of length n_layers with the hidden states from each layer.
            Optional: only if output_hidden_states=True
        all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
            Tuple of length n_layers with the attention weights from each layer
            Optional: only if output_attentions=True
        """
        all_hidden_states = ()
        all_attentions = ()

        hidden_state = x
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(x=hidden_state,
                                         attn_mask=attn_mask,
                                         head_mask=head_mask[i])
            hidden_state = layer_outputs[-1]

            if self.output_attentions:
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
                all_attentions = all_attentions + (attentions,)
            else:
                assert len(layer_outputs) == 1

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state,)

        outputs = (hidden_state,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)


### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
class DistilBertPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """
    config_class = DistilBertConfig
    pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = None
    base_model_prefix = "distilbert"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, nn.Embedding):
            if module.weight.requires_grad:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


DISTILBERT_START_DOCSTRING = r"""
    DistilBERT is a small, fast, cheap and light Transformer model
    trained by distilling Bert base. It has 40% less parameters than
    `bert-base-uncased`, runs 60% faster while preserving over 95% of
    Bert's performances as measured on the GLUE language understanding benchmark.

    Here are the differences between the interface of Bert and DistilBert:

    - DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
    - DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.

    For more information on DistilBERT, please refer to our
    `detailed blog post`_
    
    .. _`detailed blog post`:
        https://medium.com/huggingface/distilbert-8cf3380435b5

    Parameters:
        config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

DISTILBERT_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
            
            For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
        **attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
            Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
"""

[docs]@add_start_docstrings("The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.", DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class DistilBertModel(DistilBertPreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained('distilbert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(DistilBertModel, self).__init__(config) self.embeddings = Embeddings(config) # Embeddings self.transformer = Transformer(config) # Encoder self.init_weights()
[docs] def get_input_embeddings(self): return self.embeddings.word_embeddings
[docs] def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.transformer.layer[layer].attention.prune_heads(heads)
[docs] def forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) # (bs, seq_length, dim) tfmr_output = self.transformer(x=inputs_embeds, attn_mask=attention_mask, head_mask=head_mask) hidden_state = tfmr_output[0] output = (hidden_state, ) + tfmr_output[1:] return output # last-layer hidden-state, (all hidden_states), (all attentions)
[docs]@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class DistilBertForMaskedLM(DistilBertPreTrainedModel): r""" **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the masked language modeling loss. Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Masked language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids, masked_lm_labels=input_ids) loss, prediction_scores = outputs[:2] """ def __init__(self, config): super(DistilBertForMaskedLM, self).__init__(config) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.distilbert = DistilBertModel(config) self.vocab_transform = nn.Linear(config.dim, config.dim) self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12) self.vocab_projector = nn.Linear(config.dim, config.vocab_size) self.init_weights() self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
[docs] def get_output_embeddings(self): return self.vocab_projector
[docs] def forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, masked_lm_labels=None): dlbrt_output = self.distilbert(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds) hidden_states = dlbrt_output[0] # (bs, seq_length, dim) prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) prediction_logits = gelu(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size) outputs = (prediction_logits, ) + dlbrt_output[1:] if masked_lm_labels is not None: mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), masked_lm_labels.view(-1)) outputs = (mlm_loss,) + outputs return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions)
[docs]@add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class DistilBertForSequenceClassification(DistilBertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ def __init__(self, config): super(DistilBertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.distilbert = DistilBertModel(config) self.pre_classifier = nn.Linear(config.dim, config.dim) self.classifier = nn.Linear(config.dim, config.num_labels) self.dropout = nn.Dropout(config.seq_classif_dropout) self.init_weights()
[docs] def forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None): distilbert_output = self.distilbert(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds) hidden_state = distilbert_output[0] # (bs, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs, dim) pooled_output = self.pre_classifier(pooled_output) # (bs, dim) pooled_output = nn.ReLU()(pooled_output) # (bs, dim) pooled_output = self.dropout(pooled_output) # (bs, dim) logits = self.classifier(pooled_output) # (bs, dim) outputs = (logits,) + distilbert_output[1:] if labels is not None: if self.num_labels == 1: loss_fct = nn.MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions)
[docs]@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): r""" **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) loss, start_scores, end_scores = outputs[:3] """ def __init__(self, config): super(DistilBertForQuestionAnswering, self).__init__(config) self.distilbert = DistilBertModel(config) self.qa_outputs = nn.Linear(config.dim, config.num_labels) assert config.num_labels == 2 self.dropout = nn.Dropout(config.qa_dropout) self.init_weights()
[docs] def forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None): distilbert_output = self.distilbert(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds) hidden_states = distilbert_output[0] # (bs, max_query_len, dim) hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim) logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) # (bs, max_query_len) end_logits = end_logits.squeeze(-1) # (bs, max_query_len) outputs = (start_logits, end_logits,) + distilbert_output[1:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
@add_start_docstrings("""DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING) class DistilBertForTokenClassification(DistilBertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification loss. **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` Classification scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertForTokenClassification.from_pretrained('distilbert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, scores = outputs[:2] """ def __init__(self, config): super(DistilBertForTokenClassification, self).__init__(config) self.num_labels = config.num_labels self.distilbert = DistilBertModel(config) self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward(self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None): outputs = self.distilbert(input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions)