Source code for transformers.tokenization_bert

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""


import collections
import logging
import os
import unicodedata
from typing import List, Optional

from tokenizers import BertWordPieceTokenizer

from .tokenization_utils import PreTrainedTokenizer, PreTrainedTokenizerFast


logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
        "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
        "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
        "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
        "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
        "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
        "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
        "bert-base-german-cased": "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
        "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
        "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
        "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
        "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
        "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
        "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt",
        "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt",
        "TurkuNLP/bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/vocab.txt",
        "TurkuNLP/bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/vocab.txt",
        "wietsedv/bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/vocab.txt",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "bert-base-uncased": 512,
    "bert-large-uncased": 512,
    "bert-base-cased": 512,
    "bert-large-cased": 512,
    "bert-base-multilingual-uncased": 512,
    "bert-base-multilingual-cased": 512,
    "bert-base-chinese": 512,
    "bert-base-german-cased": 512,
    "bert-large-uncased-whole-word-masking": 512,
    "bert-large-cased-whole-word-masking": 512,
    "bert-large-uncased-whole-word-masking-finetuned-squad": 512,
    "bert-large-cased-whole-word-masking-finetuned-squad": 512,
    "bert-base-cased-finetuned-mrpc": 512,
    "bert-base-german-dbmdz-cased": 512,
    "bert-base-german-dbmdz-uncased": 512,
    "TurkuNLP/bert-base-finnish-cased-v1": 512,
    "TurkuNLP/bert-base-finnish-uncased-v1": 512,
    "wietsedv/bert-base-dutch-cased": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "bert-base-uncased": {"do_lower_case": True},
    "bert-large-uncased": {"do_lower_case": True},
    "bert-base-cased": {"do_lower_case": False},
    "bert-large-cased": {"do_lower_case": False},
    "bert-base-multilingual-uncased": {"do_lower_case": True},
    "bert-base-multilingual-cased": {"do_lower_case": False},
    "bert-base-chinese": {"do_lower_case": False},
    "bert-base-german-cased": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
    "bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
    "bert-base-german-dbmdz-cased": {"do_lower_case": False},
    "bert-base-german-dbmdz-uncased": {"do_lower_case": True},
    "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
    "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
    "wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


[docs]class BertTokenizer(PreTrainedTokenizer): r""" Constructs a BERT tokenizer. Based on WordPiece. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`string`): File containing the vocabulary. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to lowercase the input when tokenizing. do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to do basic tokenization before WordPiece. never_split (:obj:`bool`, `optional`, defaults to :obj:`True`): List of tokens which will never be split during tokenization. Only has an effect when :obj:`do_basic_tokenize=True` unk_token (:obj:`string`, `optional`, defaults to "[UNK]"): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`string`, `optional`, defaults to "[SEP]"): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`string`, `optional`, defaults to "[PAD]"): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`string`, `optional`, defaults to "[CLS]"): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`string`, `optional`, defaults to "[MASK]"): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/transformers/issues/328 """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs ): super().__init__( unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file) ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = " ".join(tokens).replace(" ##", "").strip() return out_string
[docs] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep
[docs] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True if the token list is already formatted with special tokens for the model Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formated with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1]
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | if token_ids_1 is None, only returns the first portion of the mask (0's). Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
[docs] def save_vocabulary(self, vocab_path): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. Args: vocab_path (:obj:`str`): The directory in which to save the vocabulary. Returns: :obj:`Tuple(str)`: Paths to the files saved. """ index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"]) else: vocab_file = vocab_path with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file) ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,)
class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True): """ Constructs a BasicTokenizer. Args: **do_lower_case**: Whether to lower case the input. **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. **tokenize_chinese_chars**: (`optional`) boolean (default True) Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 """ if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = never_split self.tokenize_chinese_chars = tokenize_chinese_chars def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ never_split = self.never_split + (never_split if never_split is not None else []) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
[docs]class BertTokenizerFast(PreTrainedTokenizerFast): r""" Constructs a "Fast" BERT tokenizer (backed by HuggingFace's `tokenizers` library). Bert tokenization is Based on WordPiece. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`string`): File containing the vocabulary. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to lowercase the input when tokenizing. unk_token (:obj:`string`, `optional`, defaults to "[UNK]"): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`string`, `optional`, defaults to "[SEP]"): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`string`, `optional`, defaults to "[PAD]"): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`string`, `optional`, defaults to "[CLS]"): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`string`, `optional`, defaults to "[MASK]"): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/transformers/issues/328 clean_text (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/transformers/issues/328 """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", clean_text=True, tokenize_chinese_chars=True, strip_accents=True, wordpieces_prefix="##", **kwargs ): super().__init__( BertWordPieceTokenizer( vocab_file=vocab_file, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, clean_text=clean_text, handle_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, lowercase=do_lower_case, wordpieces_prefix=wordpieces_prefix, ), unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.do_lower_case = do_lower_case
[docs] def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1: output += token_ids_1 + [self.sep_token_id] return output
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | if token_ids_1 is None, only returns the first portion of the mask (0's). Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]