Source code for transformers.models.canine.tokenization_canine

# coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CANINE."""

from typing import Dict, List, Optional

from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging

logger = logging.get_logger(__name__)

    "nielsr/canine-s": 2048,

# Unicode defines 1,114,112 total “codepoints”

# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from
PAD = 0

CLS = 0xE000
SEP = 0xE001
BOS = 0xE002
MASK = 0xE003

# Maps special codepoints to human-readable names.
SPECIAL_CODEPOINTS: Dict[int, str] = {
    # Special symbols are represented using codepoints values that are valid,
    # but designated as "Private Use", meaning that they will never be assigned
    # characters by the Unicode Consortium, and are thus safe for use here.
    # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
    # excluded and should fail with a hard error.
    CLS: "[CLS]",
    SEP: "[SEP]",
    BOS: "[BOS]",
    MASK: "[MASK]",
    PAD: "[PAD]",

# Maps special codepoint human-readable names to their codepoint values.
SPECIAL_CODEPOINTS_BY_NAME: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}

[docs]class CanineTokenizer(PreTrainedTokenizer): r""" Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then converts each character into its Unicode code point. :class:`~transformers.CanineTokenizer` inherits from :class:`~transformers.PreTrainedTokenizer`. Refer to superclass :class:`~transformers.PreTrainedTokenizer` for usage examples and documentation concerning parameters. Args: model_max_length (:obj:`int`, `optional`, defaults to 2048): The maximum sentence length the model accepts. """ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, bos_token=chr(CLS), eos_token=chr(SEP), sep_token=chr(SEP), cls_token=chr(CLS), pad_token=chr(PAD), mask_token=chr(MASK), add_prefix_space=False, model_max_length=2048, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, model_max_length=model_max_length, **kwargs, ) # Creates a mapping for looking up the IDs of special symbols. self._special_codepoints: Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): self._special_codepoints[name] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. self._special_codepoint_strings: Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } self._unicode_vocab_size = UNICODE_VOCAB_SIZE self._num_special_tokens = len(self._special_codepoints) @property def vocab_size(self) -> int: return self._unicode_vocab_size def _tokenize(self, text: str) -> List[str]: """Tokenize a string (i.e. perform character splitting).""" return list(text) def _convert_token_to_id(self, token: str) -> int: """Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value).""" try: return ord(token) except TypeError: raise ValueError(f"invalid token: '{token}'") def _convert_id_to_token(self, index: int) -> str: """ Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to human-readable format. """ try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(index) except TypeError: raise ValueError(f"invalid id: {index}") def convert_tokens_to_string(self, tokens): return "".join(tokens)
[docs] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CANINE sequence has the following format: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] result = cls + token_ids_0 + sep if token_ids_1 is not None: result += token_ids_1 + sep return result
[docs] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) result = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: result += ([0] * len(token_ids_1)) + [1] return result
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] result = len(cls + token_ids_0 + sep) * [0] if token_ids_1 is not None: result += len(token_ids_1 + sep) * [1] return result
# CanineTokenizer has no vocab file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): return ()