import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import json def recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, jobs, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vec, companies_majors_vec): input_hard_skills_vec = tfidf_vectorizer_skills.transform([input_hard_skills]) input_soft_skills_vec = tfidf_vectorizer_skills.transform([input_soft_skills]) input_major_vec = tfidf_vectorizer_majors.transform([input_major]) input_skills_vec = (input_hard_skills_vec + input_soft_skills_vec) / 2 skills_similarity = cosine_similarity(input_skills_vec, companies_skills_vec) major_similarity = cosine_similarity(input_major_vec, companies_majors_vec) if skills_similarity.shape[1] != major_similarity.shape[1]: min_dim = min(skills_similarity.shape[1], major_similarity.shape[1]) skills_similarity = skills_similarity[:, :min_dim] major_similarity = major_similarity[:, :min_dim] combined_similarity = (skills_similarity + major_similarity) / 2 sorted_company_indices = np.argsort(-combined_similarity[0]) recommended_companies = jobs.iloc[sorted_company_indices]['Major'].values[:3] return recommended_companies.tolist() def handler(event, context): input_data = json.loads(event['body']) input_hard_skills = input_data["input_hard_skills"] input_soft_skills = input_data["input_soft_skills"] input_major = input_data["input_major"] users_data = "1st_train.csv" applicants = pd.read_csv(users_data) jobs_data = "jobs_data.csv" companies = pd.read_csv(jobs_data) tfidf_vectorizer_skills = TfidfVectorizer() tfidf_vectorizer_majors = TfidfVectorizer() all_skills = pd.concat([applicants['final_hard_skill'], applicants['final_soft_skill'], companies['final_hard_skill'], companies['final_soft_skill']]) all_majors = pd.concat([applicants['candidate_field'], companies['Major']]) all_skills_vectorized = tfidf_vectorizer_skills.fit_transform(all_skills) all_majors_vectorized = tfidf_vectorizer_majors.fit_transform(all_majors) num_applicants = len(applicants) num_companies = len(companies) applicants_skills_vectorized = all_skills_vectorized[:num_applicants*2] companies_skills_vectorized = all_skills_vectorized[num_applicants*2:] applicants_majors_vectorized = all_majors_vectorized[:num_applicants] companies_majors_vectorized = all_majors_vectorized[num_applicants:] recommended_jobs = recommend_jobs_for_input_skills(input_hard_skills, input_soft_skills, input_major, companies, tfidf_vectorizer_skills, tfidf_vectorizer_majors, companies_skills_vectorized, companies_majors_vectorized) return { 'statusCode': 200, 'body': json.dumps(recommended_jobs) }