commissarsilver commited on
Commit
f3c9d85
·
verified ·
1 Parent(s): 378a23f

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colpaligemma-3b-mix-448-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colpaligemma-3b-mix-448-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0acb85e5a2974f7bf545565ff8be191311d76452829b574c56b96b13991d4ac
3
+ size 78625112
checkpoint-587/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colpaligemma-3b-mix-448-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-587/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colpaligemma-3b-mix-448-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
checkpoint-587/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0acb85e5a2974f7bf545565ff8be191311d76452829b574c56b96b13991d4ac
3
+ size 78625112
checkpoint-587/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81771e4afee0643d18f8bebb85aac331a78f506ebf7936bfa3e051e339e977b6
3
+ size 157385722
checkpoint-587/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acbeb798b18916fc470fd0b90b29f85ec4ba7e8170d1fd46e14613afbdf3e2b
3
+ size 14244
checkpoint-587/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1568f92601bf6cee1d56c4be80f5028e33227b17fe5eb7a730a7007d77dcf9ee
3
+ size 1064
checkpoint-587/trainer_state.json ADDED
@@ -0,0 +1,527 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 50,
6
+ "global_step": 587,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017035775127768313,
13
+ "grad_norm": 1.6640625,
14
+ "learning_rate": 5e-06,
15
+ "loss": 0.3494,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.034071550255536626,
20
+ "grad_norm": 1.203125,
21
+ "learning_rate": 1e-05,
22
+ "loss": 0.3494,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.05110732538330494,
27
+ "grad_norm": 1.2421875,
28
+ "learning_rate": 1.5e-05,
29
+ "loss": 0.3523,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.06814310051107325,
34
+ "grad_norm": 1.53125,
35
+ "learning_rate": 2e-05,
36
+ "loss": 0.3428,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08517887563884156,
41
+ "grad_norm": 1.3046875,
42
+ "learning_rate": 2.5e-05,
43
+ "loss": 0.359,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.08517887563884156,
48
+ "eval_loss": 0.3472045063972473,
49
+ "eval_runtime": 44.9607,
50
+ "eval_samples_per_second": 3.27,
51
+ "eval_steps_per_second": 3.27,
52
+ "step": 50
53
+ },
54
+ {
55
+ "epoch": 0.10221465076660988,
56
+ "grad_norm": 1.21875,
57
+ "learning_rate": 3e-05,
58
+ "loss": 0.3494,
59
+ "step": 60
60
+ },
61
+ {
62
+ "epoch": 0.11925042589437819,
63
+ "grad_norm": 1.2734375,
64
+ "learning_rate": 3.5e-05,
65
+ "loss": 0.3527,
66
+ "step": 70
67
+ },
68
+ {
69
+ "epoch": 0.1362862010221465,
70
+ "grad_norm": 0.64453125,
71
+ "learning_rate": 4e-05,
72
+ "loss": 0.349,
73
+ "step": 80
74
+ },
75
+ {
76
+ "epoch": 0.15332197614991483,
77
+ "grad_norm": 1.0703125,
78
+ "learning_rate": 4.5e-05,
79
+ "loss": 0.3432,
80
+ "step": 90
81
+ },
82
+ {
83
+ "epoch": 0.17035775127768313,
84
+ "grad_norm": 1.40625,
85
+ "learning_rate": 5e-05,
86
+ "loss": 0.3252,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.17035775127768313,
91
+ "eval_loss": 0.35169535875320435,
92
+ "eval_runtime": 45.0372,
93
+ "eval_samples_per_second": 3.264,
94
+ "eval_steps_per_second": 3.264,
95
+ "step": 100
96
+ },
97
+ {
98
+ "epoch": 0.18739352640545145,
99
+ "grad_norm": 1.2890625,
100
+ "learning_rate": 4.897330595482547e-05,
101
+ "loss": 0.3191,
102
+ "step": 110
103
+ },
104
+ {
105
+ "epoch": 0.20442930153321975,
106
+ "grad_norm": 2.28125,
107
+ "learning_rate": 4.7946611909650925e-05,
108
+ "loss": 0.289,
109
+ "step": 120
110
+ },
111
+ {
112
+ "epoch": 0.22146507666098808,
113
+ "grad_norm": 3.765625,
114
+ "learning_rate": 4.691991786447639e-05,
115
+ "loss": 0.2395,
116
+ "step": 130
117
+ },
118
+ {
119
+ "epoch": 0.23850085178875638,
120
+ "grad_norm": 9.5625,
121
+ "learning_rate": 4.5893223819301853e-05,
122
+ "loss": 0.3263,
123
+ "step": 140
124
+ },
125
+ {
126
+ "epoch": 0.2555366269165247,
127
+ "grad_norm": 4.84375,
128
+ "learning_rate": 4.486652977412731e-05,
129
+ "loss": 0.1648,
130
+ "step": 150
131
+ },
132
+ {
133
+ "epoch": 0.2555366269165247,
134
+ "eval_loss": 0.611720085144043,
135
+ "eval_runtime": 44.8864,
136
+ "eval_samples_per_second": 3.275,
137
+ "eval_steps_per_second": 3.275,
138
+ "step": 150
139
+ },
140
+ {
141
+ "epoch": 0.272572402044293,
142
+ "grad_norm": 21.125,
143
+ "learning_rate": 4.383983572895277e-05,
144
+ "loss": 0.163,
145
+ "step": 160
146
+ },
147
+ {
148
+ "epoch": 0.28960817717206133,
149
+ "grad_norm": 7.25,
150
+ "learning_rate": 4.281314168377823e-05,
151
+ "loss": 0.4368,
152
+ "step": 170
153
+ },
154
+ {
155
+ "epoch": 0.30664395229982966,
156
+ "grad_norm": 29.625,
157
+ "learning_rate": 4.17864476386037e-05,
158
+ "loss": 0.2398,
159
+ "step": 180
160
+ },
161
+ {
162
+ "epoch": 0.32367972742759793,
163
+ "grad_norm": 15.3125,
164
+ "learning_rate": 4.075975359342916e-05,
165
+ "loss": 0.1639,
166
+ "step": 190
167
+ },
168
+ {
169
+ "epoch": 0.34071550255536626,
170
+ "grad_norm": 0.119140625,
171
+ "learning_rate": 3.973305954825462e-05,
172
+ "loss": 0.2869,
173
+ "step": 200
174
+ },
175
+ {
176
+ "epoch": 0.34071550255536626,
177
+ "eval_loss": 0.6622754335403442,
178
+ "eval_runtime": 44.5126,
179
+ "eval_samples_per_second": 3.302,
180
+ "eval_steps_per_second": 3.302,
181
+ "step": 200
182
+ },
183
+ {
184
+ "epoch": 0.3577512776831346,
185
+ "grad_norm": 0.021484375,
186
+ "learning_rate": 3.8706365503080084e-05,
187
+ "loss": 0.1419,
188
+ "step": 210
189
+ },
190
+ {
191
+ "epoch": 0.3747870528109029,
192
+ "grad_norm": 9.6875,
193
+ "learning_rate": 3.767967145790555e-05,
194
+ "loss": 0.1224,
195
+ "step": 220
196
+ },
197
+ {
198
+ "epoch": 0.39182282793867124,
199
+ "grad_norm": 0.0693359375,
200
+ "learning_rate": 3.6652977412731007e-05,
201
+ "loss": 0.3138,
202
+ "step": 230
203
+ },
204
+ {
205
+ "epoch": 0.4088586030664395,
206
+ "grad_norm": 6.8125,
207
+ "learning_rate": 3.562628336755647e-05,
208
+ "loss": 0.1766,
209
+ "step": 240
210
+ },
211
+ {
212
+ "epoch": 0.42589437819420783,
213
+ "grad_norm": 0.07421875,
214
+ "learning_rate": 3.459958932238193e-05,
215
+ "loss": 0.1243,
216
+ "step": 250
217
+ },
218
+ {
219
+ "epoch": 0.42589437819420783,
220
+ "eval_loss": 0.6063656210899353,
221
+ "eval_runtime": 43.927,
222
+ "eval_samples_per_second": 3.346,
223
+ "eval_steps_per_second": 3.346,
224
+ "step": 250
225
+ },
226
+ {
227
+ "epoch": 0.44293015332197616,
228
+ "grad_norm": 7.59375,
229
+ "learning_rate": 3.357289527720739e-05,
230
+ "loss": 0.1272,
231
+ "step": 260
232
+ },
233
+ {
234
+ "epoch": 0.4599659284497445,
235
+ "grad_norm": 28.375,
236
+ "learning_rate": 3.254620123203286e-05,
237
+ "loss": 0.4251,
238
+ "step": 270
239
+ },
240
+ {
241
+ "epoch": 0.47700170357751276,
242
+ "grad_norm": 0.462890625,
243
+ "learning_rate": 3.1519507186858315e-05,
244
+ "loss": 0.4472,
245
+ "step": 280
246
+ },
247
+ {
248
+ "epoch": 0.4940374787052811,
249
+ "grad_norm": 40.25,
250
+ "learning_rate": 3.049281314168378e-05,
251
+ "loss": 0.4209,
252
+ "step": 290
253
+ },
254
+ {
255
+ "epoch": 0.5110732538330494,
256
+ "grad_norm": 0.031494140625,
257
+ "learning_rate": 2.9466119096509244e-05,
258
+ "loss": 0.1857,
259
+ "step": 300
260
+ },
261
+ {
262
+ "epoch": 0.5110732538330494,
263
+ "eval_loss": 0.7174944281578064,
264
+ "eval_runtime": 43.835,
265
+ "eval_samples_per_second": 3.353,
266
+ "eval_steps_per_second": 3.353,
267
+ "step": 300
268
+ },
269
+ {
270
+ "epoch": 0.5281090289608177,
271
+ "grad_norm": 3.015625,
272
+ "learning_rate": 2.8439425051334705e-05,
273
+ "loss": 0.2324,
274
+ "step": 310
275
+ },
276
+ {
277
+ "epoch": 0.545144804088586,
278
+ "grad_norm": 0.0184326171875,
279
+ "learning_rate": 2.7412731006160163e-05,
280
+ "loss": 0.1289,
281
+ "step": 320
282
+ },
283
+ {
284
+ "epoch": 0.5621805792163543,
285
+ "grad_norm": 0.1201171875,
286
+ "learning_rate": 2.6386036960985628e-05,
287
+ "loss": 0.1295,
288
+ "step": 330
289
+ },
290
+ {
291
+ "epoch": 0.5792163543441227,
292
+ "grad_norm": 0.005859375,
293
+ "learning_rate": 2.5359342915811092e-05,
294
+ "loss": 0.393,
295
+ "step": 340
296
+ },
297
+ {
298
+ "epoch": 0.596252129471891,
299
+ "grad_norm": 23.375,
300
+ "learning_rate": 2.433264887063655e-05,
301
+ "loss": 0.3171,
302
+ "step": 350
303
+ },
304
+ {
305
+ "epoch": 0.596252129471891,
306
+ "eval_loss": 0.7911351919174194,
307
+ "eval_runtime": 43.7143,
308
+ "eval_samples_per_second": 3.363,
309
+ "eval_steps_per_second": 3.363,
310
+ "step": 350
311
+ },
312
+ {
313
+ "epoch": 0.6132879045996593,
314
+ "grad_norm": 0.0242919921875,
315
+ "learning_rate": 2.3305954825462014e-05,
316
+ "loss": 0.535,
317
+ "step": 360
318
+ },
319
+ {
320
+ "epoch": 0.6303236797274276,
321
+ "grad_norm": 0.50390625,
322
+ "learning_rate": 2.2279260780287475e-05,
323
+ "loss": 0.2197,
324
+ "step": 370
325
+ },
326
+ {
327
+ "epoch": 0.6473594548551959,
328
+ "grad_norm": 2.53125,
329
+ "learning_rate": 2.125256673511294e-05,
330
+ "loss": 0.3187,
331
+ "step": 380
332
+ },
333
+ {
334
+ "epoch": 0.6643952299829642,
335
+ "grad_norm": 7.8125,
336
+ "learning_rate": 2.02258726899384e-05,
337
+ "loss": 0.1459,
338
+ "step": 390
339
+ },
340
+ {
341
+ "epoch": 0.6814310051107325,
342
+ "grad_norm": 39.25,
343
+ "learning_rate": 1.919917864476386e-05,
344
+ "loss": 0.5212,
345
+ "step": 400
346
+ },
347
+ {
348
+ "epoch": 0.6814310051107325,
349
+ "eval_loss": 0.7614322304725647,
350
+ "eval_runtime": 43.7037,
351
+ "eval_samples_per_second": 3.364,
352
+ "eval_steps_per_second": 3.364,
353
+ "step": 400
354
+ },
355
+ {
356
+ "epoch": 0.6984667802385008,
357
+ "grad_norm": 3.640625,
358
+ "learning_rate": 1.8172484599589323e-05,
359
+ "loss": 0.1773,
360
+ "step": 410
361
+ },
362
+ {
363
+ "epoch": 0.7155025553662692,
364
+ "grad_norm": 0.005645751953125,
365
+ "learning_rate": 1.7145790554414784e-05,
366
+ "loss": 0.2599,
367
+ "step": 420
368
+ },
369
+ {
370
+ "epoch": 0.7325383304940375,
371
+ "grad_norm": 30.5,
372
+ "learning_rate": 1.611909650924025e-05,
373
+ "loss": 0.3468,
374
+ "step": 430
375
+ },
376
+ {
377
+ "epoch": 0.7495741056218058,
378
+ "grad_norm": 5.5,
379
+ "learning_rate": 1.5092402464065708e-05,
380
+ "loss": 0.2754,
381
+ "step": 440
382
+ },
383
+ {
384
+ "epoch": 0.7666098807495741,
385
+ "grad_norm": 32.0,
386
+ "learning_rate": 1.406570841889117e-05,
387
+ "loss": 0.3287,
388
+ "step": 450
389
+ },
390
+ {
391
+ "epoch": 0.7666098807495741,
392
+ "eval_loss": 0.8178677558898926,
393
+ "eval_runtime": 43.7442,
394
+ "eval_samples_per_second": 3.36,
395
+ "eval_steps_per_second": 3.36,
396
+ "step": 450
397
+ },
398
+ {
399
+ "epoch": 0.7836456558773425,
400
+ "grad_norm": 3.0,
401
+ "learning_rate": 1.3039014373716632e-05,
402
+ "loss": 0.1921,
403
+ "step": 460
404
+ },
405
+ {
406
+ "epoch": 0.8006814310051107,
407
+ "grad_norm": 28.125,
408
+ "learning_rate": 1.2012320328542096e-05,
409
+ "loss": 0.4395,
410
+ "step": 470
411
+ },
412
+ {
413
+ "epoch": 0.817717206132879,
414
+ "grad_norm": 4.25,
415
+ "learning_rate": 1.0985626283367557e-05,
416
+ "loss": 0.2133,
417
+ "step": 480
418
+ },
419
+ {
420
+ "epoch": 0.8347529812606473,
421
+ "grad_norm": 7.25,
422
+ "learning_rate": 9.95893223819302e-06,
423
+ "loss": 0.4362,
424
+ "step": 490
425
+ },
426
+ {
427
+ "epoch": 0.8517887563884157,
428
+ "grad_norm": 5.78125,
429
+ "learning_rate": 8.932238193018481e-06,
430
+ "loss": 0.418,
431
+ "step": 500
432
+ },
433
+ {
434
+ "epoch": 0.8517887563884157,
435
+ "eval_loss": 0.8019587993621826,
436
+ "eval_runtime": 43.8445,
437
+ "eval_samples_per_second": 3.353,
438
+ "eval_steps_per_second": 3.353,
439
+ "step": 500
440
+ },
441
+ {
442
+ "epoch": 0.868824531516184,
443
+ "grad_norm": 5.84375,
444
+ "learning_rate": 7.905544147843944e-06,
445
+ "loss": 0.236,
446
+ "step": 510
447
+ },
448
+ {
449
+ "epoch": 0.8858603066439523,
450
+ "grad_norm": 9.0625,
451
+ "learning_rate": 6.878850102669406e-06,
452
+ "loss": 0.5388,
453
+ "step": 520
454
+ },
455
+ {
456
+ "epoch": 0.9028960817717206,
457
+ "grad_norm": 0.00543212890625,
458
+ "learning_rate": 5.852156057494867e-06,
459
+ "loss": 0.0928,
460
+ "step": 530
461
+ },
462
+ {
463
+ "epoch": 0.919931856899489,
464
+ "grad_norm": 10.9375,
465
+ "learning_rate": 4.825462012320329e-06,
466
+ "loss": 0.1343,
467
+ "step": 540
468
+ },
469
+ {
470
+ "epoch": 0.9369676320272572,
471
+ "grad_norm": 6.59375,
472
+ "learning_rate": 3.7987679671457908e-06,
473
+ "loss": 0.099,
474
+ "step": 550
475
+ },
476
+ {
477
+ "epoch": 0.9369676320272572,
478
+ "eval_loss": 0.8314433097839355,
479
+ "eval_runtime": 43.8265,
480
+ "eval_samples_per_second": 3.354,
481
+ "eval_steps_per_second": 3.354,
482
+ "step": 550
483
+ },
484
+ {
485
+ "epoch": 0.9540034071550255,
486
+ "grad_norm": 32.75,
487
+ "learning_rate": 2.7720739219712527e-06,
488
+ "loss": 0.1544,
489
+ "step": 560
490
+ },
491
+ {
492
+ "epoch": 0.9710391822827938,
493
+ "grad_norm": 22.75,
494
+ "learning_rate": 1.7453798767967144e-06,
495
+ "loss": 0.2434,
496
+ "step": 570
497
+ },
498
+ {
499
+ "epoch": 0.9880749574105622,
500
+ "grad_norm": 0.33203125,
501
+ "learning_rate": 7.186858316221766e-07,
502
+ "loss": 0.1046,
503
+ "step": 580
504
+ }
505
+ ],
506
+ "logging_steps": 10,
507
+ "max_steps": 587,
508
+ "num_input_tokens_seen": 0,
509
+ "num_train_epochs": 1,
510
+ "save_steps": 500,
511
+ "stateful_callbacks": {
512
+ "TrainerControl": {
513
+ "args": {
514
+ "should_epoch_stop": false,
515
+ "should_evaluate": false,
516
+ "should_log": false,
517
+ "should_save": true,
518
+ "should_training_stop": true
519
+ },
520
+ "attributes": {}
521
+ }
522
+ },
523
+ "total_flos": 8836792572744000.0,
524
+ "train_batch_size": 1,
525
+ "trial_name": null,
526
+ "trial_params": null
527
+ }
checkpoint-587/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68e821eaad6d4dd2b6f1b80fc29291f65db04129307960603f655433b95a3b28
3
+ size 5176
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 347ab05e5a44584027e84e8fbb8b98fe92cbf103
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_seq_length": 1024,
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "ColPaliProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 448,
23
+ "width": 448
24
+ }
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ff84f53c290d0348c4e206da6094ef781cf8c0e482fec8b268a996b32257cfd
3
+ size 34600975
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
training_config.yml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/train_colpali_docmatix_hardneg_ib_3b-mix-448
4
+ processor:
5
+ () : colpali_engine.utils.transformers_wrappers.AutoProcessorWrapper
6
+ pretrained_model_name_or_path: "vidore/colpaligemma-3b-mix-448-base" # "./models/paligemma-3b-mix-448"
7
+ max_length: 50
8
+ model:
9
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
10
+ class_to_instanciate: !ext colpali_engine.models.ColPali
11
+ pretrained_model_name_or_path: "vidore/colpaligemma-3b-mix-448-base"
12
+ torch_dtype: !ext torch.bfloat16
13
+ # device_map: "auto"
14
+ # quantization_config:
15
+ # (): transformers.BitsAndBytesConfig
16
+ # load_in_4bit: true
17
+ # bnb_4bit_quant_type: "nf4"
18
+ # bnb_4bit_compute_dtype: "bfloat16"
19
+ # bnb_4bit_use_double_quant: true
20
+
21
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_tai_hard_negs # load_tai_hard_negs
22
+ eval_dataset_loader: !import ../data/test_data_tai.yaml
23
+
24
+ max_length: 50
25
+ run_eval: true
26
+ add_suffix: true
27
+ loss_func:
28
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseNegativeCELoss
29
+ in_batch_term: true
30
+ tr_args: !import ../tr_args/default_neg_tr_args.yaml
31
+ peft_config:
32
+ (): peft.LoraConfig
33
+ r: 32
34
+ lora_alpha: 32
35
+ lora_dropout: 0.1
36
+ init_lora_weights: "gaussian"
37
+ bias: "none"
38
+ task_type: "FEATURE_EXTRACTION"
39
+ target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
40
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'