import torch import torch.nn as nn from omegaconf import OmegaConf from modules import devices, shared cond_cast_unet = getattr(devices, 'cond_cast_unet', lambda x: x) from ldm.util import exists from ldm.modules.attention import SpatialTransformer from ldm.modules.diffusionmodules.util import conv_nd, linear, zero_module, timestep_embedding from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock class TorchHijackForUnet: """ This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match; this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64 """ def __getattr__(self, item): if item == 'cat': return self.cat if hasattr(torch, item): return getattr(torch, item) raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) def cat(self, tensors, *args, **kwargs): if len(tensors) == 2: a, b = tensors if a.shape[-2:] != b.shape[-2:]: a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest") tensors = (a, b) return torch.cat(tensors, *args, **kwargs) th = TorchHijackForUnet() def align(hint, size): b, c, h1, w1 = hint.shape h, w = size if h != h1 or w != w1: hint = th.nn.functional.interpolate(hint, size=size, mode="nearest") return hint def get_node_name(name, parent_name): if len(name) <= len(parent_name): return False, '' p = name[:len(parent_name)] if p != parent_name: return False, '' return True, name[len(parent_name):] class PlugableControlModel(nn.Module): def __init__(self, state_dict, config_path, lowvram=False, base_model=None) -> None: super().__init__() self.config = OmegaConf.load(config_path) self.control_model = ControlNet(**self.config.model.params.control_stage_config.params) if any([k.startswith("control_model.") for k, v in state_dict.items()]): if 'difference' in state_dict and base_model is not None: print('We will stop supporting diff models soon because of its lack of robustness.') print('Please begin to use official models as soon as possible.') unet_state_dict = base_model.state_dict() unet_state_dict_keys = unet_state_dict.keys() final_state_dict = {} counter = 0 for key in state_dict.keys(): if not key.startswith("control_model."): continue p = state_dict[key] is_control, node_name = get_node_name(key, 'control_') key_name = node_name.replace("model.", "") if is_control else key if key_name in unet_state_dict_keys: p_new = p + unet_state_dict[key_name].clone().cpu() counter += 1 else: p_new = p final_state_dict[key] = p_new print(f'Diff model cloned: {counter} values') state_dict = final_state_dict state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items() if k.startswith("control_model.")} self.control_model.load_state_dict(state_dict) if not lowvram: self.control_model.to(devices.get_device_for("controlnet")) def reset(self): pass def forward(self, *args, **kwargs): return self.control_model(*args, **kwargs) class ControlNet(nn.Module): def __init__( self, image_size, in_channels, model_channels, hint_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=False, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, use_spatial_transformer=False, # custom transformer support transformer_depth=1, # custom transformer support context_dim=None, # custom transformer support # custom support for prediction of discrete ids into codebook of first stage vq model n_embed=None, legacy=True, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, ): use_fp16 = getattr(devices, 'dtype_unet', devices.dtype) == th.float16 and not getattr(shared.cmd_opts, "no_half_controlnet", False) super().__init__() if use_spatial_transformer: assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' if context_dim is not None: assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' from omegaconf.listconfig import ListConfig if type(context_dim) == ListConfig: context_dim = list(context_dim) if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.dims = dims self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range( len(num_attention_blocks)))) print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set.") self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.predict_codebook_ids = n_embed is not None time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) self.input_hint_block = TimestepEmbedSequential( conv_nd(dims, hint_channels, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 32, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 32, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 96, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 96, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 256, 3, padding=1, stride=2), nn.SiLU(), zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self.zero_convs.append(self.make_zero_conv(ch)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) self.zero_convs.append(self.make_zero_conv(ch)) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: #num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, # always uses a self-attn ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self.middle_block_out = self.make_zero_conv(ch) self._feature_size += ch def make_zero_conv(self, channels): return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) def align(self, hint, h, w): b, c, h1, w1 = hint.shape if h != h1 or w != w1: return align(hint, (h, w)) return hint def forward(self, x, hint, timesteps, context, **kwargs): t_emb = cond_cast_unet(timestep_embedding(timesteps, self.model_channels, repeat_only=False)) emb = self.time_embed(t_emb) guided_hint = self.input_hint_block(cond_cast_unet(hint), emb, context) outs = [] h1, w1 = x.shape[-2:] guided_hint = self.align(guided_hint, h1, w1) h = x.type(self.dtype) for module, zero_conv in zip(self.input_blocks, self.zero_convs): if guided_hint is not None: h = module(h, emb, context) h += guided_hint guided_hint = None else: h = module(h, emb, context) outs.append(zero_conv(h, emb, context)) h = self.middle_block(h, emb, context) outs.append(self.middle_block_out(h, emb, context)) return outs