import argparse import torch from safetensors.torch import load_file, save_file if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sd15", default=None, type=str, required=True, help="Path to the original sd15.") parser.add_argument("--control", default=None, type=str, required=True, help="Path to the sd15 with control.") parser.add_argument("--dst", default=None, type=str, required=True, help="Path to the output difference model.") parser.add_argument("--fp16", action="store_true", help="Save as fp16.") parser.add_argument("--bf16", action="store_true", help="Save as bf16.") args = parser.parse_args() assert args.sd15 is not None, "Must provide a original sd15 model path!" assert args.control is not None, "Must provide a sd15 with control model path!" assert args.dst is not None, "Must provide a output path!" # make differences: copy from https://github.com/lllyasviel/ControlNet/blob/main/tool_transfer_control.py def get_node_name(name, parent_name): if len(name) <= len(parent_name): return False, '' p = name[:len(parent_name)] if p != parent_name: return False, '' return True, name[len(parent_name):] # remove first/cond stage from sd to reduce memory usage def remove_first_and_cond(sd): keys = list(sd.keys()) for key in keys: is_first_stage, _ = get_node_name(key, 'first_stage_model') is_cond_stage, _ = get_node_name(key, 'cond_stage_model') if is_first_stage or is_cond_stage: sd.pop(key, None) return sd print(f"loading: {args.sd15}") if args.sd15.endswith(".safetensors"): sd15_state_dict = load_file(args.sd15) else: sd15_state_dict = torch.load(args.sd15) sd15_state_dict = sd15_state_dict.pop("state_dict", sd15_state_dict) sd15_state_dict = remove_first_and_cond(sd15_state_dict) print(f"loading: {args.control}") if args.control.endswith(".safetensors"): control_state_dict = load_file(args.control) else: control_state_dict = torch.load(args.control) control_state_dict = remove_first_and_cond(control_state_dict) # make diff of original and control print(f"create difference") keys = list(control_state_dict.keys()) final_state_dict = {"difference": torch.tensor(1.0)} # indicates difference for key in keys: p = control_state_dict.pop(key) is_control, node_name = get_node_name(key, 'control_') if not is_control: continue sd15_key_name = 'model.diffusion_' + node_name if sd15_key_name in sd15_state_dict: # part of U-Net # print("in sd15", key, sd15_key_name) p_new = p - sd15_state_dict.pop(sd15_key_name) if torch.max(torch.abs(p_new)) < 1e-6: # no difference? print("no diff", key, sd15_key_name) continue else: # print("not in sd15", key, sd15_key_name) p_new = p # hint or zero_conv final_state_dict[key] = p_new save_dtype = None if args.fp16: save_dtype = torch.float16 elif args.bf16: save_dtype = torch.bfloat16 if save_dtype is not None: for key in final_state_dict.keys(): final_state_dict[key] = final_state_dict[key].to(save_dtype) print("saving difference.") if args.dst.endswith(".safetensors"): save_file(final_state_dict, args.dst) else: torch.save({"state_dict": final_state_dict}, args.dst) print("done!")