import gradio as gr import functools from typing import List, Optional, Union, Dict, Callable import numpy as np import base64 from scripts.utils import svg_preprocess from scripts import ( global_state, external_code, processor, batch_hijack, ) from scripts.processor import ( preprocessor_sliders_config, flag_preprocessor_resolution, model_free_preprocessors, preprocessor_filters, HWC3, ) from modules import shared from modules.ui_components import FormRow class ToolButton(gr.Button, gr.components.FormComponent): """Small button with single emoji as text, fits inside gradio forms""" def __init__(self, **kwargs): super().__init__(variant="tool", elem_classes=["cnet-toolbutton"], **kwargs) def get_block_name(self): return "button" class UiControlNetUnit(external_code.ControlNetUnit): """The data class that stores all states of a ControlNetUnit.""" def __init__( self, input_mode: batch_hijack.InputMode = batch_hijack.InputMode.SIMPLE, batch_images: Optional[Union[str, List[external_code.InputImage]]] = None, output_dir: str = "", loopback: bool = False, *args, **kwargs, ): super().__init__(*args, **kwargs) self.is_ui = True self.input_mode = input_mode self.batch_images = batch_images self.output_dir = output_dir self.loopback = loopback def update_json_download_link(json_string: str, file_name: str) -> Dict: base64_encoded_json = base64.b64encode(json_string.encode("utf-8")).decode("utf-8") data_uri = f"data:application/json;base64,{base64_encoded_json}" style = """ position: absolute; right: var(--size-2); bottom: calc(var(--size-2) * 4); font-size: x-small; font-weight: bold; padding: 2px; box-shadow: var(--shadow-drop); border: 1px solid var(--button-secondary-border-color); border-radius: var(--radius-sm); background: var(--background-fill-primary); height: var(--size-5); color: var(--block-label-text-color); """ hint = "Download the pose as .json file" html = f""" Json""" return gr.update(value=html, visible=(json_string != "")) class ControlNetUiGroup(object): # Note: Change symbol hints mapping in `javascript/hints.js` when you change the symbol values. refresh_symbol = "\U0001f504" # 🔄 switch_values_symbol = "\U000021C5" # ⇅ camera_symbol = "\U0001F4F7" # 📷 reverse_symbol = "\U000021C4" # ⇄ tossup_symbol = "\u2934" trigger_symbol = "\U0001F4A5" # 💥 open_symbol = "\U0001F4DD" # 📝 global_batch_input_dir = gr.Textbox( label="Controlnet input directory", placeholder="Leave empty to use input directory", **shared.hide_dirs, elem_id="controlnet_batch_input_dir", ) img2img_batch_input_dir = None img2img_batch_input_dir_callbacks = [] img2img_batch_output_dir = None img2img_batch_output_dir_callbacks = [] txt2img_submit_button = None img2img_submit_button = None # Slider controls from A1111 WebUI. txt2img_w_slider = None txt2img_h_slider = None img2img_w_slider = None img2img_h_slider = None def __init__( self, gradio_compat: bool, infotext_fields: List[str], default_unit: external_code.ControlNetUnit, preprocessors: List[Callable], ): self.gradio_compat = gradio_compat self.infotext_fields = infotext_fields self.default_unit = default_unit self.preprocessors = preprocessors self.webcam_enabled = False self.webcam_mirrored = False # Note: All gradio elements declared in `render` will be defined as member variable. self.upload_tab = None self.input_image = None self.generated_image_group = None self.generated_image = None self.download_pose_link = None self.batch_tab = None self.batch_image_dir = None self.create_canvas = None self.canvas_width = None self.canvas_height = None self.canvas_create_button = None self.canvas_cancel_button = None self.open_new_canvas_button = None self.webcam_enable = None self.webcam_mirror = None self.send_dimen_button = None self.enabled = None self.lowvram = None self.pixel_perfect = None self.preprocessor_preview = None self.type_filter = None self.module = None self.trigger_preprocessor = None self.model = None self.refresh_models = None self.weight = None self.guidance_start = None self.guidance_end = None self.advanced = None self.processor_res = None self.threshold_a = None self.threshold_b = None self.control_mode = None self.resize_mode = None self.loopback = None def render(self, tabname: str, elem_id_tabname: str) -> None: """The pure HTML structure of a single ControlNetUnit. Calling this function will populate `self` with all gradio element declared in local scope. Args: tabname: elem_id_tabname: Returns: None """ with gr.Tabs(): with gr.Tab(label="Single Image") as self.upload_tab: with gr.Row().style(equal_height=True): self.input_image = gr.Image( source="upload", brush_radius=20, mirror_webcam=False, type="numpy", tool="sketch", elem_id=f"{elem_id_tabname}_{tabname}_input_image", ) with gr.Group(visible=False) as self.generated_image_group: self.generated_image = gr.Image( label="Preprocessor Preview", elem_id=f"{elem_id_tabname}_{tabname}_generated_image", ).style( height=242 ) # Gradio's magic number. Only 242 works. self.download_pose_link = gr.HTML(value="", visible=False) preview_close_button_style = """ position: absolute; right: var(--size-2); bottom: var(--size-2); font-size: x-small; font-weight: bold; padding: 2px; cursor: pointer; box-shadow: var(--shadow-drop); border: 1px solid var(--button-secondary-border-color); border-radius: var(--radius-sm); background: var(--background-fill-primary); height: var(--size-5); color: var(--block-label-text-color); """ preview_check_elem_id = f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_preview_checkbox" preview_close_button_js = f"document.querySelector('#{preview_check_elem_id} input[type=\\'checkbox\\']').click();" gr.HTML( value=f"""Close""", visible=True, ) with gr.Tab(label="Batch") as self.batch_tab: self.batch_image_dir = gr.Textbox( label="Input Directory", placeholder="Leave empty to use img2img batch controlnet input directory", elem_id=f"{elem_id_tabname}_{tabname}_batch_image_dir", ) with gr.Accordion(label="Open New Canvas", visible=False) as self.create_canvas: self.canvas_width = gr.Slider( label="New Canvas Width", minimum=256, maximum=1024, value=512, step=64, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_width", ) self.canvas_height = gr.Slider( label="New Canvas Height", minimum=256, maximum=1024, value=512, step=64, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_height", ) with gr.Row(): self.canvas_create_button = gr.Button( value="Create New Canvas", elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_create_button", ) self.canvas_cancel_button = gr.Button( value="Cancel", elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_cancel_button", ) with gr.Row(elem_classes="controlnet_image_controls"): gr.HTML( value="

Set the preprocessor to [invert] If your image has white background and black lines.

", elem_classes="controlnet_invert_warning", ) self.open_new_canvas_button = ToolButton( value=ControlNetUiGroup.open_symbol, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_open_new_canvas_button", ) self.webcam_enable = ToolButton( value=ControlNetUiGroup.camera_symbol, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_enable", ) self.webcam_mirror = ToolButton( value=ControlNetUiGroup.reverse_symbol, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_mirror", ) self.send_dimen_button = ToolButton( value=ControlNetUiGroup.tossup_symbol, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_send_dimen_button", ) with FormRow( elem_classes=["checkboxes-row", "controlnet_main_options"], variant="compact", ): self.enabled = gr.Checkbox( label="Enable", value=self.default_unit.enabled, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_enable_checkbox", ) self.lowvram = gr.Checkbox( label="Low VRAM", value=self.default_unit.low_vram, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_low_vram_checkbox", ) self.pixel_perfect = gr.Checkbox( label="Pixel Perfect", value=self.default_unit.pixel_perfect, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_pixel_perfect_checkbox", ) self.preprocessor_preview = gr.Checkbox( label="Allow Preview", value=False, elem_id=preview_check_elem_id ) if not shared.opts.data.get("controlnet_disable_control_type", False): with gr.Row(elem_classes="controlnet_control_type"): self.type_filter = gr.Radio( list(preprocessor_filters.keys()), label=f"Control Type", value="All", elem_id=f"{elem_id_tabname}_{tabname}_controlnet_type_filter_radio", elem_classes="controlnet_control_type_filter_group", ) with gr.Row(elem_classes="controlnet_preprocessor_model"): self.module = gr.Dropdown( global_state.ui_preprocessor_keys, label=f"Preprocessor", value=self.default_unit.module, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_dropdown", ) self.trigger_preprocessor = ToolButton( value=ControlNetUiGroup.trigger_symbol, visible=True, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_trigger_preprocessor", ) self.model = gr.Dropdown( list(global_state.cn_models.keys()), label=f"Model", value=self.default_unit.model, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_model_dropdown", ) self.refresh_models = ToolButton( value=ControlNetUiGroup.refresh_symbol, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_refresh_models", ) with gr.Row(elem_classes="controlnet_weight_steps"): self.weight = gr.Slider( label=f"Control Weight", value=self.default_unit.weight, minimum=0.0, maximum=2.0, step=0.05, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_weight_slider", elem_classes="controlnet_control_weight_slider", ) self.guidance_start = gr.Slider( label="Starting Control Step", value=self.default_unit.guidance_start, minimum=0.0, maximum=1.0, interactive=True, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_start_control_step_slider", elem_classes="controlnet_start_control_step_slider", ) self.guidance_end = gr.Slider( label="Ending Control Step", value=self.default_unit.guidance_end, minimum=0.0, maximum=1.0, interactive=True, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_ending_control_step_slider", elem_classes="controlnet_ending_control_step_slider", ) # advanced options with gr.Column(visible=False) as self.advanced: self.processor_res = gr.Slider( label="Preprocessor resolution", value=self.default_unit.processor_res, minimum=64, maximum=2048, visible=False, interactive=False, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_resolution_slider", ) self.threshold_a = gr.Slider( label="Threshold A", value=self.default_unit.threshold_a, minimum=64, maximum=1024, visible=False, interactive=False, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_A_slider", ) self.threshold_b = gr.Slider( label="Threshold B", value=self.default_unit.threshold_b, minimum=64, maximum=1024, visible=False, interactive=False, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_B_slider", ) self.control_mode = gr.Radio( choices=[e.value for e in external_code.ControlMode], value=self.default_unit.control_mode.value, label="Control Mode", elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_mode_radio", elem_classes="controlnet_control_mode_radio", ) self.resize_mode = gr.Radio( choices=[e.value for e in external_code.ResizeMode], value=self.default_unit.resize_mode.value, label="Resize Mode", elem_id=f"{elem_id_tabname}_{tabname}_controlnet_resize_mode_radio", elem_classes="controlnet_resize_mode_radio", ) self.loopback = gr.Checkbox( label="[Loopback] Automatically send generated images to this ControlNet unit", value=self.default_unit.loopback, elem_id=f"{elem_id_tabname}_{tabname}_controlnet_automatically_send_generated_images_checkbox", elem_classes="controlnet_loopback_checkbox", ) def register_send_dimensions(self, is_img2img: bool): """Register event handler for send dimension button.""" def send_dimensions(image): def closesteight(num): rem = num % 8 if rem <= 4: return round(num - rem) else: return round(num + (8 - rem)) if image: interm = np.asarray(image.get("image")) return closesteight(interm.shape[1]), closesteight(interm.shape[0]) else: return gr.Slider.update(), gr.Slider.update() outputs = ( [ ControlNetUiGroup.img2img_w_slider, ControlNetUiGroup.img2img_h_slider, ] if is_img2img else [ ControlNetUiGroup.txt2img_w_slider, ControlNetUiGroup.txt2img_h_slider, ] ) self.send_dimen_button.click( fn=send_dimensions, inputs=[self.input_image], outputs=outputs, ) def register_webcam_toggle(self): def webcam_toggle(): self.webcam_enabled = not self.webcam_enabled return { "value": None, "source": "webcam" if self.webcam_enabled else "upload", "__type__": "update", } self.webcam_enable.click(webcam_toggle, inputs=None, outputs=self.input_image) def register_webcam_mirror_toggle(self): def webcam_mirror_toggle(): self.webcam_mirrored = not self.webcam_mirrored return {"mirror_webcam": self.webcam_mirrored, "__type__": "update"} self.webcam_mirror.click( webcam_mirror_toggle, inputs=None, outputs=self.input_image ) def register_refresh_all_models(self): def refresh_all_models(*inputs): global_state.update_cn_models() dd = inputs[0] selected = dd if dd in global_state.cn_models else "None" return gr.Dropdown.update( value=selected, choices=list(global_state.cn_models.keys()) ) self.refresh_models.click(refresh_all_models, self.model, self.model) def register_build_sliders(self): if not self.gradio_compat: return def build_sliders(module, pp): grs = [] module = global_state.get_module_basename(module) if module not in preprocessor_sliders_config: grs += [ gr.update( label=flag_preprocessor_resolution, value=512, minimum=64, maximum=2048, step=1, visible=not pp, interactive=not pp, ), gr.update(visible=False, interactive=False), gr.update(visible=False, interactive=False), gr.update(visible=True), ] else: for slider_config in preprocessor_sliders_config[module]: if isinstance(slider_config, dict): visible = True if slider_config["name"] == flag_preprocessor_resolution: visible = not pp grs.append( gr.update( label=slider_config["name"], value=slider_config["value"], minimum=slider_config["min"], maximum=slider_config["max"], step=slider_config["step"] if "step" in slider_config else 1, visible=visible, interactive=visible, ) ) else: grs.append(gr.update(visible=False, interactive=False)) while len(grs) < 3: grs.append(gr.update(visible=False, interactive=False)) grs.append(gr.update(visible=True)) if module in model_free_preprocessors: grs += [ gr.update(visible=False, value="None"), gr.update(visible=False), ] else: grs += [gr.update(visible=True), gr.update(visible=True)] return grs inputs = [self.module, self.pixel_perfect] outputs = [ self.processor_res, self.threshold_a, self.threshold_b, self.advanced, self.model, self.refresh_models, ] self.module.change(build_sliders, inputs=inputs, outputs=outputs) self.pixel_perfect.change(build_sliders, inputs=inputs, outputs=outputs) if self.type_filter is not None: def filter_selected(k, pp): default_option = preprocessor_filters[k] pattern = k.lower() preprocessor_list = global_state.ui_preprocessor_keys model_list = list(global_state.cn_models.keys()) if pattern == "all": return [ gr.Dropdown.update(value="none", choices=preprocessor_list), gr.Dropdown.update(value="None", choices=model_list), ] + build_sliders("none", pp) filtered_preprocessor_list = [ x for x in preprocessor_list if pattern in x.lower() or x.lower() == "none" ] if pattern in ["canny", "lineart", "scribble", "mlsd"]: filtered_preprocessor_list += [ x for x in preprocessor_list if "invert" in x.lower() ] filtered_model_list = [ x for x in model_list if pattern in x.lower() or x.lower() == "none" ] if default_option not in filtered_preprocessor_list: default_option = filtered_preprocessor_list[0] if len(filtered_model_list) == 1: default_model = "None" filtered_model_list = model_list else: default_model = filtered_model_list[1] for x in filtered_model_list: if "11" in x.split("[")[0]: default_model = x break return [ gr.Dropdown.update( value=default_option, choices=filtered_preprocessor_list ), gr.Dropdown.update( value=default_model, choices=filtered_model_list ), ] + build_sliders(default_option, pp) self.type_filter.change( filter_selected, inputs=[self.type_filter, self.pixel_perfect], outputs=[self.module, self.model, *outputs], ) def register_run_annotator(self, is_img2img: bool): def run_annotator(image, module, pres, pthr_a, pthr_b, t2i_w, t2i_h, pp, rm): if image is None: return gr.update(value=None, visible=True), gr.update(), gr.update() img = HWC3(image["image"]) if not ( (image["mask"][:, :, 0] == 0).all() or (image["mask"][:, :, 0] == 255).all() ): img = HWC3(image["mask"][:, :, 0]) if "inpaint" in module: color = HWC3(image["image"]) alpha = image["mask"][:, :, 0:1] img = np.concatenate([color, alpha], axis=2) module = global_state.get_module_basename(module) preprocessor = self.preprocessors[module] if pp: raw_H, raw_W, _ = img.shape target_H, target_W = t2i_h, t2i_w rm = str(rm) k0 = float(target_H) / float(raw_H) k1 = float(target_W) / float(raw_W) if rm == external_code.ResizeMode.OUTER_FIT.value: estimation = min(k0, k1) * float(min(raw_H, raw_W)) else: estimation = max(k0, k1) * float(min(raw_H, raw_W)) pres = int(np.round(estimation)) print(f"Pixel Perfect Mode Enabled In Preview.") print(f"resize_mode = {rm}") print(f"raw_H = {raw_H}") print(f"raw_W = {raw_W}") print(f"target_H = {target_H}") print(f"target_W = {target_W}") print(f"estimation = {estimation}") class JsonAcceptor: def __init__(self) -> None: self.value = "" def accept(self, json_string: str) -> None: self.value = json_string json_acceptor = JsonAcceptor() print(f"Preview Resolution = {pres}") def is_openpose(module: str): return "openpose" in module # Only openpose preprocessor returns a JSON output, pass json_acceptor # only when a JSON output is expected. This will make preprocessor cache # work for all other preprocessors other than openpose ones. JSON acceptor # instance are different every call, which means cache will never take # effect. # TODO: Maybe we should let `preprocessor` return a Dict to alleviate this issue? # This requires changing all callsites though. result, is_image = preprocessor( img, res=pres, thr_a=pthr_a, thr_b=pthr_b, json_pose_callback=json_acceptor.accept if is_openpose(module) else None, ) if "clip" in module: result = processor.clip_vision_visualization(result) is_image = True if is_image: if result.ndim == 3 and result.shape[2] == 4: inpaint_mask = result[:, :, 3] result = result[:, :, 0:3] result[inpaint_mask > 127] = 0 return ( # Update to `generated_image` gr.update(value=result, visible=True, interactive=False), # Update to `download_pose_link` update_json_download_link(json_acceptor.value, "pose.json"), # preprocessor_preview gr.update(value=True), ) return ( # Update to `generated_image` gr.update(value=None, visible=True), # Update to `download_pose_link` update_json_download_link(json_acceptor.value, "pose.json"), # preprocessor_preview gr.update(value=True), ) self.trigger_preprocessor.click( fn=run_annotator, inputs=[ self.input_image, self.module, self.processor_res, self.threshold_a, self.threshold_b, ControlNetUiGroup.img2img_w_slider if is_img2img else ControlNetUiGroup.txt2img_w_slider, ControlNetUiGroup.img2img_h_slider if is_img2img else ControlNetUiGroup.txt2img_h_slider, self.pixel_perfect, self.resize_mode, ], outputs=[ self.generated_image, self.download_pose_link, self.preprocessor_preview, ], ) def register_shift_preview(self): def shift_preview(is_on): return ( # generated_image gr.update() if is_on else gr.update(value=None), # generated_image_group gr.update(visible=is_on), # download_pose_link gr.update() if is_on else gr.update(value=None), ) self.preprocessor_preview.change( fn=shift_preview, inputs=[self.preprocessor_preview], outputs=[ self.generated_image, self.generated_image_group, self.download_pose_link, ], ) def register_create_canvas(self): self.open_new_canvas_button.click( lambda: gr.Accordion.update(visible=True), inputs=None, outputs=self.create_canvas, ) self.canvas_cancel_button.click( lambda: gr.Accordion.update(visible=False), inputs=None, outputs=self.create_canvas, ) def fn_canvas(h, w): return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255, gr.Accordion.update( visible=False ) self.canvas_create_button.click( fn=fn_canvas, inputs=[self.canvas_height, self.canvas_width], outputs=[self.input_image, self.create_canvas], ) def register_callbacks(self, is_img2img: bool): """Register callbacks on the UI elements. Args: is_img2img: Whether ControlNet is under img2img. False when in txt2img mode. Returns: None """ self.register_send_dimensions(is_img2img) self.register_webcam_toggle() self.register_webcam_mirror_toggle() self.register_refresh_all_models() self.register_build_sliders() self.register_run_annotator(is_img2img) self.register_shift_preview() self.register_create_canvas() def register_modules(self, tabname: str, params): enabled, module, model, weight = params[4:8] guidance_start, guidance_end, pixel_perfect, control_mode = params[-4:] self.infotext_fields.extend( [ (enabled, f"{tabname} Enabled"), (module, f"{tabname} Preprocessor"), (model, f"{tabname} Model"), (weight, f"{tabname} Weight"), (guidance_start, f"{tabname} Guidance Start"), (guidance_end, f"{tabname} Guidance End"), ] ) def render_and_register_unit(self, tabname: str, is_img2img: bool): """Render the invisible states elements for misc persistent purposes. Register callbacks on loading/unloading the controlnet unit and handle batch processes. Args: tabname: is_img2img: Returns: The data class "ControlNetUnit" representing this ControlNetUnit. """ input_mode = gr.State(batch_hijack.InputMode.SIMPLE) batch_image_dir_state = gr.State("") output_dir_state = gr.State("") unit_args = ( input_mode, batch_image_dir_state, output_dir_state, self.loopback, self.enabled, self.module, self.model, self.weight, self.input_image, self.resize_mode, self.lowvram, self.processor_res, self.threshold_a, self.threshold_b, self.guidance_start, self.guidance_end, self.pixel_perfect, self.control_mode, ) self.register_modules(tabname, unit_args) self.input_image.preprocess = functools.partial( svg_preprocess, preprocess=self.input_image.preprocess ) unit = gr.State(self.default_unit) for comp in unit_args: event_subscribers = [] if hasattr(comp, "edit"): event_subscribers.append(comp.edit) elif hasattr(comp, "click"): event_subscribers.append(comp.click) elif isinstance(comp, gr.Slider) and hasattr(comp, "release"): event_subscribers.append(comp.release) elif hasattr(comp, "change"): event_subscribers.append(comp.change) if hasattr(comp, "clear"): event_subscribers.append(comp.clear) for event_subscriber in event_subscribers: event_subscriber( fn=UiControlNetUnit, inputs=list(unit_args), outputs=unit ) # keep input_mode in sync def ui_controlnet_unit_for_input_mode(input_mode, *args): args = list(args) args[0] = input_mode return input_mode, UiControlNetUnit(*args) for input_tab in ( (self.upload_tab, batch_hijack.InputMode.SIMPLE), (self.batch_tab, batch_hijack.InputMode.BATCH), ): input_tab[0].select( fn=ui_controlnet_unit_for_input_mode, inputs=[gr.State(input_tab[1])] + list(unit_args), outputs=[input_mode, unit], ) def determine_batch_dir(batch_dir, fallback_dir, fallback_fallback_dir): if batch_dir: return batch_dir elif fallback_dir: return fallback_dir else: return fallback_fallback_dir # keep batch_dir in sync with global batch input textboxes def subscribe_for_batch_dir(): batch_dirs = [ self.batch_image_dir, ControlNetUiGroup.global_batch_input_dir, ControlNetUiGroup.img2img_batch_input_dir, ] for batch_dir_comp in batch_dirs: subscriber = getattr(batch_dir_comp, "blur", None) if subscriber is None: continue subscriber( fn=determine_batch_dir, inputs=batch_dirs, outputs=[batch_image_dir_state], queue=False, ) if ControlNetUiGroup.img2img_batch_input_dir is None: # we are too soon, subscribe later when available ControlNetUiGroup.img2img_batch_input_dir_callbacks.append( subscribe_for_batch_dir ) else: subscribe_for_batch_dir() # keep output_dir in sync with global batch output textbox def subscribe_for_output_dir(): ControlNetUiGroup.img2img_batch_output_dir.blur( fn=lambda a: a, inputs=[ControlNetUiGroup.img2img_batch_output_dir], outputs=[output_dir_state], queue=False, ) if ControlNetUiGroup.img2img_batch_input_dir is None: # we are too soon, subscribe later when available ControlNetUiGroup.img2img_batch_output_dir_callbacks.append( subscribe_for_output_dir ) else: subscribe_for_output_dir() ( ControlNetUiGroup.img2img_submit_button if is_img2img else ControlNetUiGroup.txt2img_submit_button ).click( fn=UiControlNetUnit, inputs=list(unit_args), outputs=unit, queue=False, ) return unit @staticmethod def on_after_component(component, **_kwargs): elem_id = getattr(component, "elem_id", None) if elem_id == "txt2img_generate": ControlNetUiGroup.txt2img_submit_button = component return if elem_id == "img2img_generate": ControlNetUiGroup.img2img_submit_button = component return if elem_id == "img2img_batch_input_dir": ControlNetUiGroup.img2img_batch_input_dir = component for callback in ControlNetUiGroup.img2img_batch_input_dir_callbacks: callback() return if elem_id == "img2img_batch_output_dir": ControlNetUiGroup.img2img_batch_output_dir = component for callback in ControlNetUiGroup.img2img_batch_output_dir_callbacks: callback() return if elem_id == "img2img_batch_inpaint_mask_dir": ControlNetUiGroup.global_batch_input_dir.render() return if elem_id == "txt2img_width": ControlNetUiGroup.txt2img_w_slider = component return if elem_id == "txt2img_height": ControlNetUiGroup.txt2img_h_slider = component return if elem_id == "img2img_width": ControlNetUiGroup.img2img_w_slider = component return if elem_id == "img2img_height": ControlNetUiGroup.img2img_h_slider = component return