## BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation This is the PyTorch code of the BLIP paper [[blog](https://blog.salesforceairesearch.com/blip-bootstrapping-language-image-pretraining/)]. The code has been tested on PyTorch 1.10. To install the dependencies, run
pip install -r requirements.txt
Catalog: - [x] Inference demo - [x] Pre-trained and finetuned checkpoints - [x] Finetuning code for Image-Text Retrieval, Image Captioning, VQA, and NLVR2 - [x] Pre-training code - [x] Zero-shot video-text retrieval - [x] Download of bootstrapped pre-training datasets ### Inference demo: Run our interactive demo using [Colab notebook](https://colab.research.google.com/github/salesforce/BLIP/blob/main/demo.ipynb) (no GPU needed). The demo includes code for: 1. Image captioning 2. Open-ended visual question answering 3. Multimodal / unimodal feature extraction 4. Image-text matching Try out the [Web demo](https://huggingface.co/spaces/Salesforce/BLIP), integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Replicate web demo and Docker image is also available at [![Replicate](https://replicate.com/salesforce/blip/badge)](https://replicate.com/salesforce/blip) ### Pre-trained checkpoints: Num. pre-train images | BLIP w/ ViT-B | BLIP w/ ViT-B and CapFilt-L | BLIP w/ ViT-L --- | :---: | :---: | :---: 14M | Download| - | - 129M | Download| Download | Download ### Finetuned checkpoints: Task | BLIP w/ ViT-B | BLIP w/ ViT-B and CapFilt-L | BLIP w/ ViT-L --- | :---: | :---: | :---: Image-Text Retrieval (COCO) | Download| - | Download Image-Text Retrieval (Flickr30k) | Download| - | Download Image Captioning (COCO) | - | Download| Download | VQA | Download| Download | - NLVR2 | Download| - | - ### Image-Text Retrieval: 1. Download COCO and Flickr30k datasets from the original websites, and set 'image_root' in configs/retrieval_{dataset}.yaml accordingly. 2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco \
--evaluate
3. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_retrieval.py \
--config ./configs/retrieval_coco.yaml \
--output_dir output/retrieval_coco 
### Image-Text Captioning: 1. Download COCO and NoCaps datasets from the original websites, and set 'image_root' in configs/caption_coco.yaml and configs/nocaps.yaml accordingly. 2. To evaluate the finetuned BLIP model on COCO, run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py --evaluate
3. To evaluate the finetuned BLIP model on NoCaps, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 eval_nocaps.py 
4. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/caption_coco.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth". Then run:
python -m torch.distributed.run --nproc_per_node=8 train_caption.py 
### VQA: 1. Download VQA v2 dataset and Visual Genome dataset from the original websites, and set 'vqa_root' and 'vg_root' in configs/vqa.yaml. 2. To evaluate the finetuned BLIP model, generate results with: (evaluation needs to be performed on official server)
python -m torch.distributed.run --nproc_per_node=8 train_vqa.py --evaluate
3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/vqa.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_vqa.py 
### NLVR2: 1. Download NLVR2 dataset from the original websites, and set 'image_root' in configs/nlvr.yaml. 2. To evaluate the finetuned BLIP model, run
python -m torch.distributed.run --nproc_per_node=8 train_nlvr.py --evaluate
3. To finetune the pre-trained checkpoint using 16 A100 GPUs, first set 'pretrained' in configs/nlvr.yaml as "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth". Then run:
python -m torch.distributed.run --nproc_per_node=16 train_nlvr.py 
### Finetune with ViT-L: In order to finetune a model with ViT-L, simply change the config file to set 'vit' as large. Batch size and learning rate may also need to be adjusted accordingly (please see the paper's appendix for hyper-parameter details). Gradient checkpoint can also be activated in the config file to reduce GPU memory usage. ### Pre-train: 1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}. 2. In configs/pretrain.yaml, set 'train_file' as the paths for the json files . 3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.run --nproc_per_node=8 pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain 
### Zero-shot video-text retrieval: 1. Download MSRVTT dataset following the instructions from https://github.com/salesforce/ALPRO, and set 'video_root' accordingly in configs/retrieval_msrvtt.yaml. 2. Install [decord](https://github.com/dmlc/decord) with
pip install decord
3. To perform zero-shot evaluation, run
python -m torch.distributed.run --nproc_per_node=8 eval_retrieval_video.py
### Pre-training datasets download: We provide bootstrapped pre-training datasets as json files. Each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'url': url_of_image, 'caption': text_of_image}. Image source | Filtered web caption | Filtered synthetic caption by ViT-B | Filtered synthetic caption by ViT-L --- | :---: | :---: | :---: CC3M+CC12M+SBU | Download| Download| Download LAION115M | Download| Download| Download ### Citation If you find this code to be useful for your research, please consider citing.
@inproceedings{li2022blip,
      title={BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, 
      author={Junnan Li and Dongxu Li and Caiming Xiong and Steven Hoi},
      year={2022},
      booktitle={ICML},
}
### Acknowledgement The implementation of BLIP relies on resources from ALBEF, Huggingface Transformers, and timm. We thank the original authors for their open-sourcing.