{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b92a88967c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694902789307873981, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFDJkz4nkF+9+thUOqIyUblZfsC+/bGVuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJbQlWwNb2MAWyUTXYBjAF0lEdAnJ4j2vjfenV9lChoBkdAMSC2UjcEeWgHS/9oCEdAnKCbXpW3jXV9lChoBkdAcT/AEt/WlWgHS/xoCEdAnKIGSpzcRHV9lChoBkdAP9oq9XcQAmgHTQMBaAhHQJyjZQuVX3h1fZQoaAZHQHF4Jpi7TUloB00nAWgIR0CcpPTEit7sdX2UKGgGR0BGoh8IAwPAaAdL9WgIR0Ccp1lZowmFdX2UKGgGR0BvLx9Aood/aAdNRQFoCEdAnKkUEgW8AnV9lChoBkdAb5JGMGX5WWgHTS8BaAhHQJyqvQMQVbl1fZQoaAZHQHArwtrbg0loB01PAWgIR0CcrZguAZsLdX2UKGgGR0BrPFUyYXwcaAdNOAFoCEdAnK9i13MY/HV9lChoBkdAcOUD+irT6WgHTXIBaAhHQJyxZPrOZ9d1fZQoaAZHQHBorLhaTwFoB01MAWgIR0CctEQ4S6DodX2UKGgGR0BG1a3RXwLFaAdL3mgIR0CctXljmSyMdX2UKGgGR0Bux7g/C66KaAdNPgFoCEdAnLc2J3xFzHV9lChoBkdAbv/CzkZJkGgHTTUBaAhHQJy5c/keZG91fZQoaAZHQHGDt8qnWJ9oB00mAWgIR0CcvP+so2GZdX2UKGgGR0BvcqCJ40MxaAdNKQFoCEdAnL8l2FFlTXV9lChoBkdAcb+fNA1NxmgHTRgBaAhHQJzBYWRA8jl1fZQoaAZHQHBEUWykbgloB00jAWgIR0CcxVpgCwKTdX2UKGgGR0AnqUeuFHrhaAdL82gIR0Ccx5B+nZTRdX2UKGgGR0BxbG9alk6LaAdNGgFoCEdAnMn2zByjpXV9lChoBkdAcvfDqW1MNGgHTRABaAhHQJzMLk92X9l1fZQoaAZHQHBl1c2R7qpoB00nAWgIR0CczvA0Kqn4dX2UKGgGR0BwOzmLcbiqaAdNGwFoCEdAnNBvl6qsEXV9lChoBkdAcZL44Ia99WgHTTUBaAhHQJzSHiWE9Md1fZQoaAZHQHDJV+y7f51oB00VAWgIR0Cc06SLqD9PdX2UKGgGR0Bu9tiF0xM4aAdNSwFoCEdAnNaOCf6Gg3V9lChoBkdAbrqlqJuVHGgHTS0BaAhHQJzYL7m+0w91fZQoaAZHQHG8bAxi5NJoB00VAWgIR0Cc2bFFDv3KdX2UKGgGR0BD9DGtITXbaAdL/mgIR0Cc3CdSEUTMdX2UKGgGR0Bu/ZV81Gb1aAdNNAFoCEdAnN3c7ZFoc3V9lChoBkdAbz68vEjxC2gHTTABaAhHQJzfgbNr0rd1fZQoaAZHQHA0uZ5Rjz9oB00yAWgIR0Cc4Syq+8GtdX2UKGgGR0Bxi2hqTKT0aAdNMQFoCEdAnOPwFPi1iXV9lChoBkdAcaBBfa6BiGgHTbIBaAhHQJzmTztkWh11fZQoaAZHQHGpyCvovBdoB01jAWgIR0Cc6VYAbQ1KdX2UKGgGR0BxPZpN9H+ZaAdNFAFoCEdAnOrRwEQoTnV9lChoBkdAO9eYplSS/2gHTegDaAhHQJzxb1TR6Wx1fZQoaAZHQHBpYhpxm05oB00vAWgIR0Cc8wFBIFvAdX2UKGgGR0BxruaPS2H+aAdNJwFoCEdAnPShg3Lmp3V9lChoBkdAbli+L3sXzmgHTU8BaAhHQJz4iy7f51x1fZQoaAZHQG4jCoS+QEJoB00cAWgIR0Cc+pVv/BFedX2UKGgGR0BxGzqPfbblaAdNMgFoCEdAnPzPn4fwJHV9lChoBkdAbHFnIQvpQmgHTRcBaAhHQJ0AtQyhzvJ1fZQoaAZHQHD5OF+NLlFoB001AWgIR0CdAzlQMx46dX2UKGgGR0BxNOwUxmCiaAdNOQFoCEdAnQW6fWcz7HV9lChoBkdAcjM3BHkLhWgHTVABaAhHQJ0JsA+6iCd1fZQoaAZHQGxUQLeANG5oB00tAWgIR0CdC1ECNjsldX2UKGgGR0BwP1MSK3uvaAdNkgFoCEdAnQ19Pk7wKHV9lChoBkdAbdBFEy+HrWgHTTkBaAhHQJ0QMwWWQfZ1fZQoaAZHQHEPHUc4o7VoB01bAWgIR0CdEhhje9BbdX2UKGgGR0BtB5x1gYxdaAdNKgFoCEdAnROrrC3w1HV9lChoBkdAcGJXS0BwM2gHTSIBaAhHQJ0VuKKpDNR1fZQoaAZHQHFdCTyJ9ApoB03iAWgIR0CdGWWo3rD7dX2UKGgGR0BuyhOWSlnAaAdN5QFoCEdAnRvxMN+b3HV9lChoBkdAcX2M8YAKfGgHTUoBaAhHQJ0ezjp9qlB1fZQoaAZHQG9vmWUr08NoB01uAWgIR0CdIMz2vjffdX2UKGgGR0BsBrtPYWcjaAdNgQJoCEdAnSVTu4PPLXV9lChoBkdAcLyEw35vcmgHTYoBaAhHQJ0ndLkCFK11fZQoaAZHQG7OLIgeRxNoB01EAWgIR0CdKT6ZYxL1dX2UKGgGR0BwdyyTpxFRaAdNMAFoCEdAnSv+3x4IKXV9lChoBkdAb66mPYFqz2gHTTgBaAhHQJ0ttIWgvlF1fZQoaAZHQGPDWsA/9pBoB03oA2gIR0CdNVR1HOKPdX2UKGgGR0BRnGUbDMvAaAdL7WgIR0CdNvLnLaEjdX2UKGgGR0BjowI6bONYaAdN6ANoCEdAnUCdEgGKRHV9lChoBkdAcC7xAB1cMWgHTaACaAhHQJ1G5K02LpB1fZQoaAZHQG0KAaNuLrJoB03SAmgIR0CdS9+QU5+6dX2UKGgGR0ByN09ECvHMaAdN0AFoCEdAnU5qWLP2PHV9lChoBkdAb8uOjIq9XmgHTUUCaAhHQJ1SolVtGd91fZQoaAZHQHBJN4iX6ZZoB00yAWgIR0CdVETOgQHzdX2UKGgGR0BtpBk/bCaaaAdNMwNoCEdAnVnS0rsjV3V9lChoBkdAcMrMBZIQOGgHTTMBaAhHQJ1beBz3h4t1fZQoaAZHQHALYXTEzftoB03cAWgIR0CdXgwZOzppdX2UKGgGR0BrJRkAggX/aAdNogNoCEdAnWQ8hC+lCXV9lChoBkdAcMsCMglniGgHTRMBaAhHQJ1nGFoL5RF1fZQoaAZHQHBz4yCWeH1oB02VAWgIR0CdaU50bLlndX2UKGgGR0Bv/6rNnoPkaAdNGgFoCEdAnWrSP+4smXV9lChoBkdAbT/ck+otMGgHTWwBaAhHQJ1uF1W8yvd1fZQoaAZHQCfiynk1dgRoB0vtaAhHQJ1vzaPCEYh1fZQoaAZHQHBFtdiUgSxoB00QAWgIR0CdcdUc4o7WdX2UKGgGR0BwyarCFbmmaAdNTAFoCEdAnXQz3yqdYnV9lChoBkdAbbvyksSTQmgHTTcBaAhHQJ14T7EYO2B1fZQoaAZHQHC5pmEoOQRoB01kAWgIR0CdezP420iRdX2UKGgGR0BxW6a/h2nsaAdNngFoCEdAnX6GKVII4XV9lChoBkdAcSx+kgwGnmgHTQkBaAhHQJ2CI+lj3Eh1fZQoaAZHQHBo47aIvaloB00sAWgIR0Cdg8BvaURndX2UKGgGR0BvvHA2ycCpaAdNRAFoCEdAnYWFiay8jHV9lChoBkdARi/aYeDFqGgHS9FoCEdAnYfBnvlU63V9lChoBkdAbreqVhTfi2gHTTMBaAhHQJ2Jaj+Jgst1fZQoaAZHQHMIwcT8HfNoB009AWgIR0Cdix1uR9w4dX2UKGgGR0BxgclWwNb1aAdNLgFoCEdAnYzKP0Zm7XV9lChoBkdAcpV7jkuHvmgHTSIBaAhHQJ2PiJKraM91fZQoaAZHQG9gU2LpA2RoB00wAWgIR0CdkTKPXCj2dX2UKGgGR0BtcJFocrAhaAdNJgFoCEdAnZLFS0jTrnV9lChoBkdAbU6xiXpnpWgHS/9oCEdAnZU9pyp71XV9lChoBkdAUVVeBxxT9GgHS8poCEdAnZZWTkhib3V9lChoBkdAcoBNR3u/lGgHTTIBaAhHQJ2X/Ue+23N1fZQoaAZHQGuxQL3K0UpoB00gAWgIR0CdmY6lLvkSdX2UKGgGR0BwreDEm6XjaAdNKQFoCEdAnZxDGLk0anV9lChoBkdAb4PBdD6WPmgHTRsBaAhHQJ2dzCBPKuB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVhAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRTDu3UlMe+XPiaVG6dymz0gCMA2luY5SKES3HW5R7Tg9o4ppS6uJhWb0AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigWOTnKjAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}