import torch from torchvision import transforms from PIL import Image import io # Load the Faster R-CNN model from model import get_model class EndpointHandler: def __init__(self, path: str = ""): """ Initialize the handler. Load the Faster R-CNN model. """ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model_weights_path = os.path.join(path, "model.pt") # Adjust path # Load model self.model = get_model(num_classes=4) checkpoint = torch.load(self.model_weights_path, map_location=self.device) self.model.load_state_dict(checkpoint["model_state_dict"]) self.model.to(self.device) self.model.eval() # Image preprocessing self.transform = transforms.Compose([ transforms.Resize((640, 640)), transforms.ToTensor(), ]) def __call__(self, data): """ Process incoming binary image data and return object detection results. """ try: # Read raw binary data (image file) image_bytes = data.get("body", b"") if not image_bytes: return {"error": "No image data provided in request."} image = Image.open(io.BytesIO(image_bytes)).convert("RGB") input_tensor = self.transform(image).unsqueeze(0).to(self.device) with torch.no_grad(): predictions = self.model(input_tensor) boxes = predictions[0]["boxes"].cpu().tolist() labels = predictions[0]["labels"].cpu().tolist() scores = predictions[0]["scores"].cpu().tolist() threshold = 0.5 results = [ {"box": box, "label": label, "score": score} for box, label, score in zip(boxes, labels, scores) if score > threshold ] return {"predictions": results} except Exception as e: return {"error": str(e)}