{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ede88c37280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713680130503444625, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM36xDyblrM/PmfqPQxNkb68c8E6eQmfOgAAAAAAAAAATdtqvY82f7rakDC1V8AFsIjkxrmFZk80AACAPwAAgD8NYUU+P/GePg7QHL0SbZW+J2srPc9CET0AAAAAAAAAADO2/rwWYXI9HmBtPRtELL6BGPi8Dm7OPAAAAAAAAAAALQtqPlzcsz4ZgzK+jJaMvkJkRT0r45e9AAAAAAAAAACzPkI9KQh1us7QhDpX6DK2pEmeOrJim7kAAIA/AACAP81Q2rsFUbQ/FnQDvjsHlL2lMfO7XlkxvQAAAAAAAAAAGj0FPVwvT7ovkh23HnOJsWdLCrsUYjs2AACAPwAAgD+aQWY8MDa+P/P6LD4GyKU+p0cHO6BL/zwAAAAAAAAAAObPxb0UEKO6aFj8O/fBMa4LZqY6+ZjCswAAgD8AAAAAjUbWvQCRpT9vnUi+bT4Zv+NJ/71CV+y8AAAAAAAAAADedJO+qYEQPzjlSD3w29i+dOAbvpbeTT0AAAAAAAAAAE2RGz01uCE/Nv8BPTPjxr5k07g8Je4cvQAAAAAAAAAAEheDvv/Lij8OUuS+r3sXv9H7lb4ahIS9AAAAAAAAAACzJIy9j652uvo84Ld6Gu6y0pRHOwkCAzcAAIA/AACAP2ZVjT1IeZW6sjuKNS+krjDGJzA7Qsm4tAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAuk+PikwiMAWyUS+SMAXSUR0CZp8lzEJjUdX2UKGgGR0BuMMMLF4s3aAdL1mgIR0CZp/aUA1ejdX2UKGgGR0Bw6sXEZR8/aAdL2mgIR0CZqB3225QQdX2UKGgGR0Btz6iwjdHlaAdL42gIR0CZqDbzbvgFdX2UKGgGR0BhK8ox59mZaAdN6ANoCEdAmaiVuejEenV9lChoBkdAcZ3RGc4HX2gHS/VoCEdAmai0lzEJjXV9lChoBkdAcWojBl+VkmgHS/JoCEdAmakHim2srHV9lChoBkdAcRCAYpDu0GgHS/9oCEdAmamIvrWy1XV9lChoBkdAcfAxkupS8GgHS9NoCEdAmauupCKJmHV9lChoBkdAcPB2PDHfdmgHS9poCEdAmavD2exwAHV9lChoBkdAblgI68xsVWgHS/NoCEdAmavd+gDifnV9lChoBkdAclrGD+R5kmgHTQYBaAhHQJmtO9tdiUh1fZQoaAZHQHA0cW9DhLpoB0vTaAhHQJmuEzCUHIJ1fZQoaAZHQHBlyrDIikhoB0vyaAhHQJmuJHmRvFZ1fZQoaAZHQHFyCXIEKVpoB00KAWgIR0CZrkj3mFJydX2UKGgGR0BxZJTDO1OTaAdL6GgIR0CZrna86FM7dX2UKGgGR0BxVGrdWQwLaAdL6WgIR0CZrqq20AtGdX2UKGgGR0BwV2stCiRGaAdL/mgIR0CZru7Xg9/0dX2UKGgGR0BxT9NHpbD/aAdL32gIR0CZr1wwTM7mdX2UKGgGR0Bx4n+6y0KJaAdL7GgIR0CZr1qYqoZRdX2UKGgGR0BwLSRigCfZaAdL/WgIR0CZsXFAVwgldX2UKGgGR0Bv022oegctaAdL6mgIR0CZtDyDIzWPdX2UKGgGR0BwZ0G9pRGdaAdL+2gIR0CZtWRtP558dX2UKGgGR0BzQHNeMQ2/aAdNCAFoCEdAmbXl1W8yvnV9lChoBkdAcRrXuE25x2gHS9toCEdAmbdwFX7tRnV9lChoBkdAbPesr/bTMWgHS+NoCEdAmbgrxI8QqnV9lChoBkdAcTJiqyWzGGgHS9xoCEdAmbhcxO+IuXV9lChoBkdAcYNpD/lyR2gHS/BoCEdAmbjUeU6gd3V9lChoBkdAcLgvCdjG1mgHTQABaAhHQJm5BvAGjbl1fZQoaAZHQHCruajN6gNoB0vdaAhHQJm5Rsk6cRV1fZQoaAZHQHBJkH2RJVdoB0vzaAhHQJm5fj3mFJx1fZQoaAZHQHAilQ66reZoB0vvaAhHQJm51lz2exx1fZQoaAZHQHGG6IBRyfdoB01FAWgIR0CZulzijtXxdX2UKGgGR0BwqBjd56dEaAdL4GgIR0CZuvCNS619dX2UKGgGR0BxFlI1+AmRaAdL6WgIR0CZvln2ZiNLdX2UKGgGR0BxOclolD4QaAdNAAFoCEdAmb7aNAC4jXV9lChoBkdAc2cVe8f3e2gHS+JoCEdAmb8qHbh3q3V9lChoBkdAcpoLpzLfUGgHS+BoCEdAmb+f2kBS1nV9lChoBkdAc1geN1hb4mgHS99oCEdAmb/IFV1fV3V9lChoBkdAclVExqO94GgHS+doCEdAmcDDFZPl+3V9lChoBkdAcf3JY1YQrmgHS91oCEdAmcDeyNXHR3V9lChoBkdAcmY3Ov+wT2gHTWIBaAhHQJnBmPRzBAR1fZQoaAZHQG7vchLXcxloB0voaAhHQJnBqQRwqAl1fZQoaAZHQHGYvHtF8XxoB00OAWgIR0CZwlBVdX1bdX2UKGgGR0Bwsku8K5TZaAdL9WgIR0CZwq/9YOlPdX2UKGgGR0Bx4RVBD5TIaAdL42gIR0CZwsKO1fE5dX2UKGgGR0BxuMegctGvaAdNRQFoCEdAmcOiJwbVBnV9lChoBkdAcgYofjjrA2gHTSsDaAhHQJnEvJ9y9251fZQoaAZHQHBpmGqPwNNoB0vmaAhHQJnGBDSgGr11fZQoaAZHQG42BWPtD2JoB0vfaAhHQJnHBS619fF1fZQoaAZHQHJzIqCpWFNoB0v0aAhHQJnHMESuhbp1fZQoaAZHQHFQrytmthdoB0v+aAhHQJnHRX6qKgt1fZQoaAZHQHCjQVGkN4JoB0vyaAhHQJnHhSHdoFp1fZQoaAZHQGEjTkyULUloB03oA2gIR0CZx+VMEidKdX2UKGgGR0BtvCjesPrfaAdL6mgIR0CZyD6O5rgwdX2UKGgGR0Bx6cbkwN9ZaAdNDgFoCEdAmclnfhuO0nV9lChoBkdAcXjEEkjX4GgHTQMBaAhHQJnJvMLWqcV1fZQoaAZHQGTyaxX4j8loB03oA2gIR0CZycyeZof0dX2UKGgGR0By91K15Sm7aAdL8WgIR0CZyd8/UvwmdX2UKGgGR0ByGgALiMo+aAdNBwFoCEdAmcnrJjlPrXV9lChoBkdAbsFT2FnIyWgHS/VoCEdAmcpKEFnqV3V9lChoBkdAcMjRCx/us2gHS/1oCEdAmcps2aUiZHV9lChoBkdAbYJXYDklu2gHS+toCEdAmcq5L26ClXV9lChoBkdAcAImxdIGyGgHS/hoCEdAmcv4tUXHinV9lChoBkdAbrlLaEi+tmgHS+poCEdAmcynlOoHcHV9lChoBkdAbarPrOZ9eGgHS9toCEdAmc2GweNkv3V9lChoBkdAc/EvBJqZdGgHS/ZoCEdAmc3w5NoJzHV9lChoBkdAcIw4wyqMnGgHS+loCEdAmc5YQnQY13V9lChoBkdAcoC7tRekYWgHTQQBaAhHQJnOf7oB7u51fZQoaAZHQHE6GRFI/aBoB0vsaAhHQJnOyaOPvKF1fZQoaAZHQHHSMeXAuZloB0vSaAhHQJnPK/bj94x1fZQoaAZHQHEJtKh+OOtoB0vUaAhHQJnPrCWNWEN1fZQoaAZHQG9n6KUFB6doB0vXaAhHQJnPtm7J4jd1fZQoaAZHQHIIWPYFqztoB00uAWgIR0CZz8xmkFfRdX2UKGgGR0Bx4/LPldTpaAdL4GgIR0CZz+XJHRTkdX2UKGgGR0BwaOyprDZUaAdL+GgIR0CZ0GozeoDQdX2UKGgGR0BuT5n3+MqCaAdL52gIR0CZ0ILV4HHFdX2UKGgGR0BwnS2qkuYhaAdL42gIR0CZ0IyDZlFudX2UKGgGR0BzjjFHavicaAdNFgFoCEdAmdIW1hLGrHV9lChoBkdAcmlrO7g882gHS/ZoCEdAmdKb17IDHXV9lChoBkdAcKXUvPC2t2gHS+VoCEdAmdLUzbeuWHV9lChoBkdAcP1/BFd9lWgHS9poCEdAmdO0y1uzhXV9lChoBkdAcLjj8k2P1mgHS+ZoCEdAmdR98qnWKHV9lChoBkdAcelN47ihnWgHTQQBaAhHQJnUoPUaybB1fZQoaAZHQHBKdRrJr+JoB0vpaAhHQJnVd0W/JvJ1fZQoaAZHQHDyj2Jzkp9oB0v2aAhHQJnVeBDohZB1fZQoaAZHQHBdMr3Cbc5oB00DAWgIR0CZ1ZE0BOpLdX2UKGgGR0BxjM4YJmdzaAdL22gIR0CZ1a6Ae7tidX2UKGgGR0BwIW0hNdqtaAdL22gIR0CZ1cZIxxkvdX2UKGgGR0Bys/I/7iyZaAdL6mgIR0CZ1fWbgCOndX2UKGgGR0Bx1cv9LpRoaAdL9mgIR0CZ1yCK77KrdX2UKGgGR0Bya4kNWluWaAdNHAFoCEdAmddDEehf0HV9lChoBkdAcTZuwX668WgHTRABaAhHQJnXsK8cuJ11fZQoaAZHQHCtizLOiWVoB00EAWgIR0CZ2V5Pdl/ZdX2UKGgGR0BxDvze40/GaAdL+2gIR0CZ2a6P8yeqdX2UKGgGR0BxRgnWrfcfaAdNCQFoCEdAmdpx1PnB+HV9lChoBkdAcKMWu5jH42gHS9doCEdAmdqr7CSA6XV9lChoBkdAcb71mrbQC2gHTQQBaAhHQJnbRsYVIqd1fZQoaAZHQHBRuafBeoloB0vVaAhHQJnbrSNOuaF1fZQoaAZHQHFfe1jRUm5oB02PAWgIR0CZ28U9ZA6ddWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}