---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Why did he go MIA?
sentences:
- Why did Yahoo kill Konfabulator?
- Why do people get angry with me?
- What are the best waterproof guns?
- source_sentence: Who is a soulmate?
sentences:
- Is she the “One”?
- Who is Pakistan's biggest enemy?
- Will smoking weed help with my anxiety?
- source_sentence: Is this poem good?
sentences:
- Is my poem any good?
- How can I become a good speaker?
- What is feminism?
- source_sentence: Who invented Yoga?
sentences:
- How was yoga invented?
- Who owns this number 3152150252?
- What is Dynamics CRM Services?
- source_sentence: Is stretching bad?
sentences:
- Is stretching good for you?
- If i=0; what will i=i++ do to i?
- What is the Output of this C program ?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 15.707175691967695
energy_consumed: 0.040409299905757354
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.202
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.86
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8104104995727539
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8250591016548463
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7247534394264221
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7347368421052631
name: Cosine Precision
- type: cosine_recall
value: 0.9407008086253369
name: Cosine Recall
- type: cosine_ap
value: 0.887247904332921
name: Cosine Ap
- type: dot_accuracy
value: 0.828
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 157.35491943359375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7898550724637681
name: Dot F1
- type: dot_f1_threshold
value: 145.7113037109375
name: Dot F1 Threshold
- type: dot_precision
value: 0.7155361050328227
name: Dot Precision
- type: dot_recall
value: 0.8814016172506739
name: Dot Recall
- type: dot_ap
value: 0.8369433397850002
name: Dot Ap
- type: manhattan_accuracy
value: 0.868
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 208.00347900390625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8307692307692308
name: Manhattan F1
- type: manhattan_f1_threshold
value: 208.00347900390625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7921760391198044
name: Manhattan Precision
- type: manhattan_recall
value: 0.8733153638814016
name: Manhattan Recall
- type: manhattan_ap
value: 0.8868217413983182
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.867
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.269388198852539
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8301404853128991
name: Euclidean F1
- type: euclidean_f1_threshold
value: 9.525729179382324
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.7888349514563107
name: Euclidean Precision
- type: euclidean_recall
value: 0.876010781671159
name: Euclidean Recall
- type: euclidean_ap
value: 0.8884154240019244
name: Euclidean Ap
- type: max_accuracy
value: 0.868
name: Max Accuracy
- type: max_accuracy_threshold
value: 208.00347900390625
name: Max Accuracy Threshold
- type: max_f1
value: 0.8307692307692308
name: Max F1
- type: max_f1_threshold
value: 208.00347900390625
name: Max F1 Threshold
- type: max_precision
value: 0.7921760391198044
name: Max Precision
- type: max_recall
value: 0.9407008086253369
name: Max Recall
- type: max_ap
value: 0.8884154240019244
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.534436244125929
name: Average Precision
- type: f1
value: 0.5447997274541295
name: F1
- type: precision
value: 0.5311002514589362
name: Precision
- type: recall
value: 0.5592246590398161
name: Recall
- type: threshold
value: 0.8626040816307068
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.928
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9712
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9782
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9874
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.928
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4151333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.26656
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14166
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7993523853760618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9341884771405065
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9560896250710075
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9766088525134997
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9516150309696244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9509392857142857
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9390263696194139
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8926
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9518
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9658
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9768
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8926
name: Dot Precision@1
- type: dot_precision@3
value: 0.40273333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.26076
name: Dot Precision@5
- type: dot_precision@10
value: 0.13882
name: Dot Precision@10
- type: dot_recall@1
value: 0.7679620996617761
name: Dot Recall@1
- type: dot_recall@3
value: 0.9105756956997251
name: Dot Recall@3
- type: dot_recall@5
value: 0.9402185219519044
name: Dot Recall@5
- type: dot_recall@10
value: 0.9623418143294613
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9263520741106431
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9243020634920638
name: Dot Mrr@10
- type: dot_map@100
value: 0.9094019438194247
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'Is stretching bad?',
'Is stretching good for you?',
'If i=0; what will i=i++ do to i?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `quora-duplicates`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.86 |
| cosine_accuracy_threshold | 0.8104 |
| cosine_f1 | 0.8251 |
| cosine_f1_threshold | 0.7248 |
| cosine_precision | 0.7347 |
| cosine_recall | 0.9407 |
| cosine_ap | 0.8872 |
| dot_accuracy | 0.828 |
| dot_accuracy_threshold | 157.3549 |
| dot_f1 | 0.7899 |
| dot_f1_threshold | 145.7113 |
| dot_precision | 0.7155 |
| dot_recall | 0.8814 |
| dot_ap | 0.8369 |
| manhattan_accuracy | 0.868 |
| manhattan_accuracy_threshold | 208.0035 |
| manhattan_f1 | 0.8308 |
| manhattan_f1_threshold | 208.0035 |
| manhattan_precision | 0.7922 |
| manhattan_recall | 0.8733 |
| manhattan_ap | 0.8868 |
| euclidean_accuracy | 0.867 |
| euclidean_accuracy_threshold | 9.2694 |
| euclidean_f1 | 0.8301 |
| euclidean_f1_threshold | 9.5257 |
| euclidean_precision | 0.7888 |
| euclidean_recall | 0.876 |
| euclidean_ap | 0.8884 |
| max_accuracy | 0.868 |
| max_accuracy_threshold | 208.0035 |
| max_f1 | 0.8308 |
| max_f1_threshold | 208.0035 |
| max_precision | 0.7922 |
| max_recall | 0.9407 |
| **max_ap** | **0.8884** |
#### Paraphrase Mining
* Dataset: `quora-duplicates-dev`
* Evaluated with [ParaphraseMiningEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| **average_precision** | **0.5344** |
| f1 | 0.5448 |
| precision | 0.5311 |
| recall | 0.5592 |
| threshold | 0.8626 |
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.928 |
| cosine_accuracy@3 | 0.9712 |
| cosine_accuracy@5 | 0.9782 |
| cosine_accuracy@10 | 0.9874 |
| cosine_precision@1 | 0.928 |
| cosine_precision@3 | 0.4151 |
| cosine_precision@5 | 0.2666 |
| cosine_precision@10 | 0.1417 |
| cosine_recall@1 | 0.7994 |
| cosine_recall@3 | 0.9342 |
| cosine_recall@5 | 0.9561 |
| cosine_recall@10 | 0.9766 |
| cosine_ndcg@10 | 0.9516 |
| cosine_mrr@10 | 0.9509 |
| **cosine_map@100** | **0.939** |
| dot_accuracy@1 | 0.8926 |
| dot_accuracy@3 | 0.9518 |
| dot_accuracy@5 | 0.9658 |
| dot_accuracy@10 | 0.9768 |
| dot_precision@1 | 0.8926 |
| dot_precision@3 | 0.4027 |
| dot_precision@5 | 0.2608 |
| dot_precision@10 | 0.1388 |
| dot_recall@1 | 0.768 |
| dot_recall@3 | 0.9106 |
| dot_recall@5 | 0.9402 |
| dot_recall@10 | 0.9623 |
| dot_ndcg@10 | 0.9264 |
| dot_mrr@10 | 0.9243 |
| dot_map@100 | 0.9094 |
## Training Details
### Training Dataset
#### sentence-transformers/quora-duplicates
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 100,000 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
What are the best ecommerce blogs to do guest posts on about SEO to gain new clients?
| Interested in being a guest blogger for an ecommerce marketing blog?
| 0
|
| How do I learn Informatica online training?
| What is Informatica online training?
| 0
|
| What effects does marijuana use have on the flu?
| What effects does Marijuana use have on the common cold?
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### sentence-transformers/quora-duplicates
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,000 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | How should I prepare for JEE Mains 2017?
| How do I prepare for the JEE 2016?
| 0
|
| What is the gate exam?
| What is the GATE exam in engineering?
| 0
|
| Where do IRS officers get posted?
| Does IRS Officers get posted abroad?
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters