--- license: apache-2.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition pipeline_tag: token-classification widget: - text: >- Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris. example_title: Amelia Earhart model-index: - name: >- SpanMarker w. xlm-roberta-large on CoNLL03 by Tom Aarsen results: - task: type: token-classification name: Named Entity Recognition dataset: type: conll2003 name: CoNLL03 split: test revision: 01ad4ad271976c5258b9ed9b910469a806ff3288 metrics: - type: f1 value: 0.9307 name: F1 - type: precision value: 0.9264 name: Precision - type: recall value: 0.9350 name: Recall datasets: - conll2003 language: - en metrics: - f1 - recall - precision --- # SpanMarker for Named Entity Recognition This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be usedfor Named Entity Recognition. In particular, this SpanMarker model uses [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) as the underlying encoder. See [train.py](train.py) for the training script. ## Usage To use this model for inference, first install the `span_marker` library: ```bash pip install span_marker ``` You can then run inference with this model like so: ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-conll03") # Run inference entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.") ``` See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.