--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: bar:After really enjoying ourselves at the bar we sat down at a table and had dinner. - text: interior decor:this little place has a cute interior decor and affordable city prices. - text: cuisine:The cuisine from what I've gathered is authentic Taiwanese, though its very different from what I've been accustomed to in Taipei. - text: dining:Go here for a romantic dinner but not for an all out wow dining experience. - text: Taipei:The cuisine from what I've gathered is authentic Taiwanese, though its very different from what I've been accustomed to in Taipei. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 8.62132655272333 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.111 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8779507785032646 name: Accuracy --- # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-aspect) - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-paraphrase-mpnet-base-v2-restaurants-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect |