--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:100231 - loss:CachedMultipleNegativesRankingLoss base_model: microsoft/mpnet-base widget: - source_sentence: 'query: who ordered the charge of the light brigade' sentences: - 'document: Charge of the Light Brigade The Charge of the Light Brigade was a charge of British light cavalry led by Lord Cardigan against Russian forces during the Battle of Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall commander of the British forces, had intended to send the Light Brigade to prevent the Russians from removing captured guns from overrun Turkish positions, a task well-suited to light cavalry.' - 'document: UNICEF The United Nations International Children''s Emergency Fund was created by the United Nations General Assembly on 11 December 1946, to provide emergency food and healthcare to children in countries that had been devastated by World War II. The Polish physician Ludwik Rajchman is widely regarded as the founder of UNICEF and served as its first chairman from 1946. On Rajchman''s suggestion, the American Maurice Pate was appointed its first executive director, serving from 1947 until his death in 1965.[5][6] In 1950, UNICEF''s mandate was extended to address the long-term needs of children and women in developing countries everywhere. In 1953 it became a permanent part of the United Nations System, and the words "international" and "emergency" were dropped from the organization''s name, making it simply the United Nations Children''s Fund, retaining the original acronym, "UNICEF".[3]' - 'document: Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American former college basketball player who played for the UCF Knights men''s basketball team of Conference USA.[1] He is the son of retired Hall of Fame basketball player Michael Jordan.' - source_sentence: 'query: what part of the cow is the rib roast' sentences: - 'document: Standing rib roast A standing rib roast, also known as prime rib, is a cut of beef from the primal rib, one of the nine primal cuts of beef. While the entire rib section comprises ribs six through 12, a standing rib roast may contain anywhere from two to seven ribs.' - 'document: Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving", just before New Directions loses at Sectionals to the Warblers, and they spend Christmas together in New York City.[29][30] Though he and Kurt continue to be on good terms, Blaine finds himself developing a crush on his best friend, Sam, which he knows will come to nothing as he knows Sam is not gay; the two of them team up to find evidence that the Warblers cheated at Sectionals, which means New Directions will be competing at Regionals. He ends up going to the Sadie Hawkins dance with Tina Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him, but as friends only.[31] When Kurt comes to Lima for the wedding of glee club director Will (Matthew Morrison) and Emma (Jayma Mays)—which Emma flees—he and Blaine make out beforehand, and sleep together afterward, though they do not resume a permanent relationship.[32]' - 'document: Soviet Union The Soviet Union (Russian: Сове́тский Сою́з, tr. Sovétsky Soyúz, IPA: [sɐˈvʲɛt͡skʲɪj sɐˈjus] ( listen)), officially the Union of Soviet Socialist Republics (Russian: Сою́з Сове́тских Социалисти́ческих Респу́блик, tr. Soyúz Sovétskikh Sotsialistícheskikh Respúblik, IPA: [sɐˈjus sɐˈvʲɛtskʲɪx sətsɨəlʲɪsˈtʲitɕɪskʲɪx rʲɪˈspublʲɪk] ( listen)), abbreviated as the USSR (Russian: СССР, tr. SSSR), was a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union of multiple national Soviet republics,[a] its government and economy were highly centralized. The country was a one-party state, governed by the Communist Party with Moscow as its capital in its largest republic, the Russian Soviet Federative Socialist Republic. The Russian nation had constitutionally equal status among the many nations of the union but exerted de facto dominance in various respects.[7] Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk. The Soviet Union was one of the five recognized nuclear weapons states and possessed the largest stockpile of weapons of mass destruction.[8] It was a founding permanent member of the United Nations Security Council, as well as a member of the Organization for Security and Co-operation in Europe (OSCE) and the leading member of the Council for Mutual Economic Assistance (CMEA) and the Warsaw Pact.' - source_sentence: 'query: what is the current big bang theory season' sentences: - 'document: Byzantine army From the seventh to the 12th centuries, the Byzantine army was among the most powerful and effective military forces in the world – neither Middle Ages Europe nor (following its early successes) the fracturing Caliphate could match the strategies and the efficiency of the Byzantine army. Restricted to a largely defensive role in the 7th to mid-9th centuries, the Byzantines developed the theme-system to counter the more powerful Caliphate. From the mid-9th century, however, they gradually went on the offensive, culminating in the great conquests of the 10th century under a series of soldier-emperors such as Nikephoros II Phokas, John Tzimiskes and Basil II. The army they led was less reliant on the militia of the themes; it was by now a largely professional force, with a strong and well-drilled infantry at its core and augmented by a revived heavy cavalry arm. With one of the most powerful economies in the world at the time, the Empire had the resources to put to the field a powerful host when needed, in order to reclaim its long-lost territories.' - 'document: The Big Bang Theory The Big Bang Theory is an American television sitcom created by Chuck Lorre and Bill Prady, both of whom serve as executive producers on the series, along with Steven Molaro. All three also serve as head writers. The show premiered on CBS on September 24, 2007.[3] The series'' tenth season premiered on September 19, 2016.[4] In March 2017, the series was renewed for two additional seasons, bringing its total to twelve, and running through the 2018–19 television season. The eleventh season is set to premiere on September 25, 2017.[5]' - 'document: 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball Tournament was held from May 20 through June 8, 2016 as the final part of the 2016 NCAA Division I softball season. The 64 NCAA Division I college softball teams were to be selected out of an eligible 293 teams on May 15, 2016. Thirty-two teams were awarded an automatic bid as champions of their conference, and thirty-two teams were selected at-large by the NCAA Division I softball selection committee. The tournament culminated with eight teams playing in the 2016 Women''s College World Series at ASA Hall of Fame Stadium in Oklahoma City in which the Oklahoma Sooners were crowned the champions.' - source_sentence: 'query: what happened to tates mom on days of our lives' sentences: - 'document: Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara (born May 10, 1956),[1] is an American actress, voice actress, singer and painter. O''Hara began her career as a Broadway actress in 1983 when she portrayed Ellie May Chipley in the musical Showboat. In 1991, she made her motion picture debut in Disney''s Beauty and the Beast, in which she voiced the film''s heroine, Belle. Following the critical and commercial success of Beauty and the Beast, O''Hara reprised her role as Belle in the film''s two direct-to-video follow-ups, Beauty and the Beast: The Enchanted Christmas and Belle''s Magical World.' - 'document: M. Shadows Matthew Charles Sanders (born July 31, 1981), better known as M. Shadows, is an American singer, songwriter, and musician. He is best known as the lead vocalist, songwriter, and a founding member of the American heavy metal band Avenged Sevenfold. In 2017, he was voted 3rd in the list of Top 25 Greatest Modern Frontmen by Ultimate Guitar.[1]' - 'document: Theresa Donovan In July 2013, Jeannie returns to Salem, this time going by her middle name, Theresa. Initially, she strikes up a connection with resident bad boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a confrontation with JJ and his mother Jennifer Horton (Melissa Reeves) in her office, her aunt Kayla confirms that Theresa is in fact Jeannie and that Jen promised to hire her as her assistant, a promise she reluctantly agrees to. Kayla reminds Theresa it is her last chance at a fresh start.[29] Theresa also strikes up a bad first impression with Jennifer''s daughter Abigail Deveraux (Kate Mansi) when Abigail smells pot on Theresa in her mother''s office.[30] To continue to battle against Jennifer, she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes of exacting her perfect revenge. In a ploy, Theresa reveals her intentions to hopefully woo Dr. Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa overdoses on marijuana and GHB. Upon hearing of their daughter''s overdose and continuing problems, Shane and Kimberly return to town in the hopes of handling their daughter''s problem, together. After believing that Theresa has a handle on her addictions, Shane and Kimberly leave town together. Theresa then teams up with hospital co-worker Anne Milbauer (Meredith Scott Lynn) to conspire against Jennifer, using Daniel as a way to hurt their relationship. In early 2014, following a Narcotics Anonymous (NA) meeting, she begins a sexual and drugged-fused relationship with Brady Black (Eric Martsolf). In 2015, after it is found that Kristen DiMera (Eileen Davidson) stole Theresa''s embryo and carried it to term, Brady and Melanie Jonas return her son, Christopher, to her and Brady, and the pair rename him Tate. When Theresa moves into the Kiriakis mansion, tensions arise between her and Victor. She eventually expresses her interest in purchasing Basic Black and running it as her own fashion company, with financial backing from Maggie Horton (Suzanne Rogers). In the hopes of finding the right partner, she teams up with Kate Roberts (Lauren Koslow) and Nicole Walker (Arianne Zucker) to achieve the goal of purchasing Basic Black, with Kate and Nicole''s business background and her own interest in fashion design. As she and Brady share several instances of rekindling their romance, she is kicked out of the mansion by Victor; as a result, Brady quits Titan and moves in with Theresa and Tate, in their own penthouse.' - source_sentence: 'query: where does the last name francisco come from' sentences: - 'document: Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).' - 'document: Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]' - 'document: Times Square Times Square is a major commercial intersection, tourist destination, entertainment center and neighborhood in the Midtown Manhattan section of New York City at the junction of Broadway and Seventh Avenue. It stretches from West 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements, Times Square is sometimes referred to as "The Crossroads of the World",[2] "The Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the "heart of the world".[7] One of the world''s busiest pedestrian areas,[8] it is also the hub of the Broadway Theater District[9] and a major center of the world''s entertainment industry.[10] Times Square is one of the world''s most visited tourist attractions, drawing an estimated 50 million visitors annually.[11] Approximately 330,000 people pass through Times Square daily,[12] many of them tourists,[13] while over 460,000 pedestrians walk through Times Square on its busiest days.[7]' datasets: - sentence-transformers/natural-questions pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 co2_eq_emissions: emissions: 150.23069332557947 energy_consumed: 0.3864932347288655 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.992 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: MPNet base trained on Natural Questions pairs results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: cosine_accuracy@1 value: 0.32 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.54 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.72 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.32 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.128 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.094 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14833333333333332 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22833333333333336 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.275 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3856666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3187569272515937 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4290793650793651 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2524141945131634 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: cosine_accuracy@1 value: 0.52 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.82 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.88 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.52 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4733333333333334 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.44000000000000006 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.4 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.03396323655614276 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.12935272940456002 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.17086006825513927 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.2726281368807285 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4729507176614181 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6735238095238094 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3353352051190898 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: cosine_accuracy@1 value: 0.5 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.66 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.76 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.84 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.49 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.65 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.74 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.82 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6605078920703665 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6122142857142857 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6101603039065089 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: cosine_accuracy@1 value: 0.34 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.54 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.66 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.34 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.23333333333333336 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16399999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18835714285714286 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.33643650793650787 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3869365079365079 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.4772698412698413 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3864278762836658 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44638095238095227 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.33106542521597093 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: cosine_accuracy@1 value: 0.58 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.68 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.72 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.58 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.29333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18799999999999997 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.10399999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.29 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.47 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.52 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4999416649642652 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6335238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4448089713818368 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.24 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.58 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.62 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.84 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.24 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.124 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08399999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.24 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.58 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.62 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.84 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5319048285659115 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4348571428571429 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.43875227720621784 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: cosine_accuracy@1 value: 0.36 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.52 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.58 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2733333333333334 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.244 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.192 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.01238391750608928 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.039883080435831664 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.06288856904273381 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.07500385649849943 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2319934745350622 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.42766666666666664 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.0794137882666506 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.42 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.58 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.72 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.78 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.42 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15200000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08199999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.4 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.56 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.69 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.74 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5748655650210671 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5314126984126983 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5242404589943156 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: cosine_accuracy@1 value: 0.84 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.94 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.96 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.84 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.24399999999999994 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.12999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7406666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8546666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9126666666666666 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.95 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8889894995280002 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.88 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.865184126984127 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: cosine_accuracy@1 value: 0.38 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.54 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.64 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.38 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.24000000000000005 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.168 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.07966666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.16466666666666668 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2476666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3466666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.32654775369281447 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.48057936507936494 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2539360793287232 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: cosine_accuracy@1 value: 0.22 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.68 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.84 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.94 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22666666666666668 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16799999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09399999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.68 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.84 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.94 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5876482592525207 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4729682539682539 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.47557555990432704 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: cosine_accuracy@1 value: 0.44 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.62 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.72 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.72 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.44 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21999999999999997 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.156 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08199999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.405 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.59 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.695 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.71 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5767123941093207 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5429999999999999 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5334565069270951 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: cosine_accuracy@1 value: 0.46938775510204084 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8163265306122449 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8979591836734694 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9795918367346939 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.46938775510204084 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.510204081632653 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.4897959183673469 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.4183673469387754 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.036314671946956895 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.11525654861192165 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.17899227494149947 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.28096865635375134 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.46189031192436647 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6598639455782312 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.36456263452013177 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.4330298273155416 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6412558869701728 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7183045525902668 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7953532182103611 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4330298273155416 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28129774986917844 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2229073783359498 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.15679748822605966 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2526681258102306 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4129688871581144 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4838469810391703 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5660156787950887 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5014720896046441 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5557746380603523 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4237619640206276 name: Cosine Map@100 --- # MPNet base trained on Natural Questions pairs This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/mpnet-base-nq-prompts") # Run inference sentences = [ 'query: where does the last name francisco come from', 'document: Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).', 'document: Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------| | cosine_accuracy@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 | | cosine_accuracy@3 | 0.44 | 0.82 | 0.66 | 0.54 | 0.68 | 0.58 | 0.48 | 0.58 | 0.9 | 0.54 | 0.68 | 0.62 | 0.8163 | | cosine_accuracy@5 | 0.54 | 0.88 | 0.76 | 0.56 | 0.7 | 0.62 | 0.52 | 0.72 | 0.94 | 0.64 | 0.84 | 0.72 | 0.898 | | cosine_accuracy@10 | 0.72 | 0.9 | 0.84 | 0.66 | 0.72 | 0.84 | 0.58 | 0.78 | 0.96 | 0.7 | 0.94 | 0.72 | 0.9796 | | cosine_precision@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 | | cosine_precision@3 | 0.1667 | 0.4733 | 0.2333 | 0.2333 | 0.2933 | 0.1933 | 0.2733 | 0.2 | 0.3667 | 0.2667 | 0.2267 | 0.22 | 0.5102 | | cosine_precision@5 | 0.128 | 0.44 | 0.16 | 0.164 | 0.188 | 0.124 | 0.244 | 0.152 | 0.244 | 0.24 | 0.168 | 0.156 | 0.4898 | | cosine_precision@10 | 0.094 | 0.4 | 0.09 | 0.1 | 0.104 | 0.084 | 0.192 | 0.082 | 0.13 | 0.168 | 0.094 | 0.082 | 0.4184 | | cosine_recall@1 | 0.1483 | 0.034 | 0.49 | 0.1884 | 0.29 | 0.24 | 0.0124 | 0.4 | 0.7407 | 0.0797 | 0.22 | 0.405 | 0.0363 | | cosine_recall@3 | 0.2283 | 0.1294 | 0.65 | 0.3364 | 0.44 | 0.58 | 0.0399 | 0.56 | 0.8547 | 0.1647 | 0.68 | 0.59 | 0.1153 | | cosine_recall@5 | 0.275 | 0.1709 | 0.74 | 0.3869 | 0.47 | 0.62 | 0.0629 | 0.69 | 0.9127 | 0.2477 | 0.84 | 0.695 | 0.179 | | cosine_recall@10 | 0.3857 | 0.2726 | 0.82 | 0.4773 | 0.52 | 0.84 | 0.075 | 0.74 | 0.95 | 0.3467 | 0.94 | 0.71 | 0.281 | | **cosine_ndcg@10** | **0.3188** | **0.473** | **0.6605** | **0.3864** | **0.4999** | **0.5319** | **0.232** | **0.5749** | **0.889** | **0.3265** | **0.5876** | **0.5767** | **0.4619** | | cosine_mrr@10 | 0.4291 | 0.6735 | 0.6122 | 0.4464 | 0.6335 | 0.4349 | 0.4277 | 0.5314 | 0.88 | 0.4806 | 0.473 | 0.543 | 0.6599 | | cosine_map@100 | 0.2524 | 0.3353 | 0.6102 | 0.3311 | 0.4448 | 0.4388 | 0.0794 | 0.5242 | 0.8652 | 0.2539 | 0.4756 | 0.5335 | 0.3646 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [NanoBEIREvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.433 | | cosine_accuracy@3 | 0.6413 | | cosine_accuracy@5 | 0.7183 | | cosine_accuracy@10 | 0.7954 | | cosine_precision@1 | 0.433 | | cosine_precision@3 | 0.2813 | | cosine_precision@5 | 0.2229 | | cosine_precision@10 | 0.1568 | | cosine_recall@1 | 0.2527 | | cosine_recall@3 | 0.413 | | cosine_recall@5 | 0.4838 | | cosine_recall@10 | 0.566 | | **cosine_ndcg@10** | **0.5015** | | cosine_mrr@10 | 0.5558 | | cosine_map@100 | 0.4238 | ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 100,231 training samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | query: who is required to report according to the hmda | document: Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5] | | query: what is the definition of endoplasmic reticulum in biology | document: Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 u... | | query: what does the ski mean in polish names | document: Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today. | * Loss: [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 100,231 evaluation samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:-------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | query: difference between russian blue and british blue cat | document: Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits. | | query: who played the little girl on mrs doubtfire | document: Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing. | | query: what year did the movie the sound of music come out | document: The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000. | * Loss: [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True - `prompts`: {'query': 'query: ', 'answer': 'document: '} - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: {'query': 'query: ', 'answer': 'document: '} - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:| | 0 | 0 | - | - | 0.0442 | 0.0851 | 0.0326 | 0.0282 | 0.0625 | 0.0708 | 0.0262 | 0.0331 | 0.6747 | 0.0387 | 0.2764 | 0.0617 | 0.0721 | 0.1159 | | 0.0026 | 1 | 5.0875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1289 | 50 | 2.0474 | 0.2481 | 0.2817 | 0.4560 | 0.6297 | 0.3893 | 0.4392 | 0.4501 | 0.1952 | 0.4191 | 0.8709 | 0.3251 | 0.5181 | 0.5186 | 0.4715 | 0.4588 | | 0.2577 | 100 | 0.2027 | 0.1365 | 0.2906 | 0.4798 | 0.6203 | 0.3737 | 0.4823 | 0.4927 | 0.2102 | 0.5126 | 0.9027 | 0.3347 | 0.5623 | 0.5201 | 0.4721 | 0.4811 | | 0.3866 | 150 | 0.14 | 0.1168 | 0.3237 | 0.4950 | 0.6585 | 0.4020 | 0.4912 | 0.5350 | 0.2362 | 0.5483 | 0.8920 | 0.3322 | 0.5817 | 0.5364 | 0.4739 | 0.5005 | | 0.5155 | 200 | 0.1253 | 0.1057 | 0.3334 | 0.4953 | 0.6676 | 0.3794 | 0.5071 | 0.5386 | 0.2416 | 0.5541 | 0.8771 | 0.3281 | 0.5820 | 0.5600 | 0.4737 | 0.5029 | | 0.6443 | 250 | 0.1305 | 0.1016 | 0.3252 | 0.4768 | 0.6554 | 0.3825 | 0.5010 | 0.5261 | 0.2395 | 0.5590 | 0.8878 | 0.3277 | 0.5922 | 0.5730 | 0.4624 | 0.5006 | | 0.7732 | 300 | 0.1183 | 0.0965 | 0.3111 | 0.4797 | 0.6638 | 0.3649 | 0.5166 | 0.5304 | 0.2236 | 0.5619 | 0.8889 | 0.3242 | 0.5809 | 0.5681 | 0.4615 | 0.4981 | | 0.9021 | 350 | 0.1102 | 0.0939 | 0.3223 | 0.4723 | 0.6682 | 0.3768 | 0.4964 | 0.5312 | 0.2307 | 0.5738 | 0.8890 | 0.3245 | 0.5873 | 0.5783 | 0.4622 | 0.5010 | | 1.0 | 388 | - | - | 0.3188 | 0.4730 | 0.6605 | 0.3864 | 0.4999 | 0.5319 | 0.2320 | 0.5749 | 0.8890 | 0.3265 | 0.5876 | 0.5767 | 0.4619 | 0.5015 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.386 kWh - **Carbon Emitted**: 0.150 kg of CO2 - **Hours Used**: 0.992 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.3.0.dev0 - Transformers: 4.45.2 - PyTorch: 2.5.0+cu121 - Accelerate: 1.0.0 - Datasets: 2.20.0 - Tokenizers: 0.20.1-dev.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```