--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - loss:MatryoshkaLoss - loss:CoSENTLoss base_model: distilbert/distilbert-base-uncased metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: The gate is yellow. sentences: - The gate is blue. - The person is starting a fire. - A woman is bungee jumping. - source_sentence: A plane in the sky. sentences: - Two airplanes in the sky. - A man is standing in the rain. - There are two men near a wall. - source_sentence: A woman is reading. sentences: - A woman is writing something. - A woman is applying eye shadow. - A dog and a red ball in the air. - source_sentence: A baby is laughing. sentences: - The baby laughed in his car seat. - Suicide bomber strikes in Syria - Bangladesh Islamist execution upheld - source_sentence: A woman is dancing. sentences: - A woman is dancing in railway station. - The flag was moving in the air. - three dogs growling On one another pipeline_tag: sentence-similarity co2_eq_emissions: emissions: 7.871164130493101 energy_consumed: 0.020249867843471606 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.112 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on distilbert/distilbert-base-uncased results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 768 type: sts-dev-768 metrics: - type: pearson_cosine value: 0.8647737221000229 name: Pearson Cosine - type: spearman_cosine value: 0.8747521728687471 name: Spearman Cosine - type: pearson_manhattan value: 0.8627734228763478 name: Pearson Manhattan - type: spearman_manhattan value: 0.8657556253211545 name: Spearman Manhattan - type: pearson_euclidean value: 0.862712112144467 name: Pearson Euclidean - type: spearman_euclidean value: 0.8657615257280495 name: Spearman Euclidean - type: pearson_dot value: 0.7442745641899206 name: Pearson Dot - type: spearman_dot value: 0.7513830366520415 name: Spearman Dot - type: pearson_max value: 0.8647737221000229 name: Pearson Max - type: spearman_max value: 0.8747521728687471 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 512 type: sts-dev-512 metrics: - type: pearson_cosine value: 0.8628378541768764 name: Pearson Cosine - type: spearman_cosine value: 0.8741345340758229 name: Spearman Cosine - type: pearson_manhattan value: 0.8619744745534216 name: Pearson Manhattan - type: spearman_manhattan value: 0.8651450292937584 name: Spearman Manhattan - type: pearson_euclidean value: 0.8622841683977804 name: Pearson Euclidean - type: spearman_euclidean value: 0.8653280682431165 name: Spearman Euclidean - type: pearson_dot value: 0.746359236761633 name: Pearson Dot - type: spearman_dot value: 0.7540849763868891 name: Spearman Dot - type: pearson_max value: 0.8628378541768764 name: Pearson Max - type: spearman_max value: 0.8741345340758229 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 256 type: sts-dev-256 metrics: - type: pearson_cosine value: 0.8588975886507025 name: Pearson Cosine - type: spearman_cosine value: 0.8714341050301952 name: Spearman Cosine - type: pearson_manhattan value: 0.8590790006287132 name: Pearson Manhattan - type: spearman_manhattan value: 0.8634123185807864 name: Spearman Manhattan - type: pearson_euclidean value: 0.8591861535833625 name: Pearson Euclidean - type: spearman_euclidean value: 0.8628587088112977 name: Spearman Euclidean - type: pearson_dot value: 0.7185871795192371 name: Pearson Dot - type: spearman_dot value: 0.7288595287151053 name: Spearman Dot - type: pearson_max value: 0.8591861535833625 name: Pearson Max - type: spearman_max value: 0.8714341050301952 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 128 type: sts-dev-128 metrics: - type: pearson_cosine value: 0.8528583626543365 name: Pearson Cosine - type: spearman_cosine value: 0.8687502864484896 name: Spearman Cosine - type: pearson_manhattan value: 0.8509433708242649 name: Pearson Manhattan - type: spearman_manhattan value: 0.857615159782176 name: Spearman Manhattan - type: pearson_euclidean value: 0.8531616082767298 name: Pearson Euclidean - type: spearman_euclidean value: 0.8580823134153918 name: Spearman Euclidean - type: pearson_dot value: 0.697019210549756 name: Pearson Dot - type: spearman_dot value: 0.705924438927243 name: Spearman Dot - type: pearson_max value: 0.8531616082767298 name: Pearson Max - type: spearman_max value: 0.8687502864484896 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev 64 type: sts-dev-64 metrics: - type: pearson_cosine value: 0.8340115410608493 name: Pearson Cosine - type: spearman_cosine value: 0.858682843519445 name: Spearman Cosine - type: pearson_manhattan value: 0.8351566362279711 name: Pearson Manhattan - type: spearman_manhattan value: 0.8445869885309296 name: Spearman Manhattan - type: pearson_euclidean value: 0.838674217877368 name: Pearson Euclidean - type: spearman_euclidean value: 0.8460894143343873 name: Spearman Euclidean - type: pearson_dot value: 0.6579249229659768 name: Pearson Dot - type: spearman_dot value: 0.6712615573330701 name: Spearman Dot - type: pearson_max value: 0.838674217877368 name: Pearson Max - type: spearman_max value: 0.858682843519445 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.833720870548252 name: Pearson Cosine - type: spearman_cosine value: 0.8469501140979906 name: Spearman Cosine - type: pearson_manhattan value: 0.8484755252691695 name: Pearson Manhattan - type: spearman_manhattan value: 0.8470024066861298 name: Spearman Manhattan - type: pearson_euclidean value: 0.8492651445573072 name: Pearson Euclidean - type: spearman_euclidean value: 0.8475238481800537 name: Spearman Euclidean - type: pearson_dot value: 0.6701649984837568 name: Pearson Dot - type: spearman_dot value: 0.6526285131648061 name: Spearman Dot - type: pearson_max value: 0.8492651445573072 name: Pearson Max - type: spearman_max value: 0.8475238481800537 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.8325595554355977 name: Pearson Cosine - type: spearman_cosine value: 0.8467500241650668 name: Spearman Cosine - type: pearson_manhattan value: 0.8474378528408064 name: Pearson Manhattan - type: spearman_manhattan value: 0.8462571021525837 name: Spearman Manhattan - type: pearson_euclidean value: 0.848182316243596 name: Pearson Euclidean - type: spearman_euclidean value: 0.8466275072216626 name: Spearman Euclidean - type: pearson_dot value: 0.6736686039338646 name: Pearson Dot - type: spearman_dot value: 0.6572299516736647 name: Spearman Dot - type: pearson_max value: 0.848182316243596 name: Pearson Max - type: spearman_max value: 0.8467500241650668 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.8225923032714455 name: Pearson Cosine - type: spearman_cosine value: 0.8403145699624681 name: Spearman Cosine - type: pearson_manhattan value: 0.8420998942805191 name: Pearson Manhattan - type: spearman_manhattan value: 0.8419520394692916 name: Spearman Manhattan - type: pearson_euclidean value: 0.8434867831513 name: Pearson Euclidean - type: spearman_euclidean value: 0.8428522494561291 name: Spearman Euclidean - type: pearson_dot value: 0.6230179114374444 name: Pearson Dot - type: spearman_dot value: 0.6061595939729718 name: Spearman Dot - type: pearson_max value: 0.8434867831513 name: Pearson Max - type: spearman_max value: 0.8428522494561291 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.8149976807930366 name: Pearson Cosine - type: spearman_cosine value: 0.8349547446101432 name: Spearman Cosine - type: pearson_manhattan value: 0.8351661617446753 name: Pearson Manhattan - type: spearman_manhattan value: 0.8360899024374612 name: Spearman Manhattan - type: pearson_euclidean value: 0.8375785243041524 name: Pearson Euclidean - type: spearman_euclidean value: 0.8375574347771609 name: Spearman Euclidean - type: pearson_dot value: 0.5958381414366161 name: Pearson Dot - type: spearman_dot value: 0.5793444545861678 name: Spearman Dot - type: pearson_max value: 0.8375785243041524 name: Pearson Max - type: spearman_max value: 0.8375574347771609 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.7981336004264228 name: Pearson Cosine - type: spearman_cosine value: 0.8269913105115189 name: Spearman Cosine - type: pearson_manhattan value: 0.8238799955007295 name: Pearson Manhattan - type: spearman_manhattan value: 0.8289121477853545 name: Spearman Manhattan - type: pearson_euclidean value: 0.8278657744625194 name: Pearson Euclidean - type: spearman_euclidean value: 0.8314643517951371 name: Spearman Euclidean - type: pearson_dot value: 0.5206433480609991 name: Pearson Dot - type: spearman_dot value: 0.5067194535547845 name: Spearman Dot - type: pearson_max value: 0.8278657744625194 name: Pearson Max - type: spearman_max value: 0.8314643517951371 name: Spearman Max --- # SentenceTransformer based on distilbert/distilbert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'A woman is dancing.', 'A woman is dancing in railway station.', 'The flag was moving in the air.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8648 | | **spearman_cosine** | **0.8748** | | pearson_manhattan | 0.8628 | | spearman_manhattan | 0.8658 | | pearson_euclidean | 0.8627 | | spearman_euclidean | 0.8658 | | pearson_dot | 0.7443 | | spearman_dot | 0.7514 | | pearson_max | 0.8648 | | spearman_max | 0.8748 | #### Semantic Similarity * Dataset: `sts-dev-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8628 | | **spearman_cosine** | **0.8741** | | pearson_manhattan | 0.862 | | spearman_manhattan | 0.8651 | | pearson_euclidean | 0.8623 | | spearman_euclidean | 0.8653 | | pearson_dot | 0.7464 | | spearman_dot | 0.7541 | | pearson_max | 0.8628 | | spearman_max | 0.8741 | #### Semantic Similarity * Dataset: `sts-dev-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8589 | | **spearman_cosine** | **0.8714** | | pearson_manhattan | 0.8591 | | spearman_manhattan | 0.8634 | | pearson_euclidean | 0.8592 | | spearman_euclidean | 0.8629 | | pearson_dot | 0.7186 | | spearman_dot | 0.7289 | | pearson_max | 0.8592 | | spearman_max | 0.8714 | #### Semantic Similarity * Dataset: `sts-dev-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8529 | | **spearman_cosine** | **0.8688** | | pearson_manhattan | 0.8509 | | spearman_manhattan | 0.8576 | | pearson_euclidean | 0.8532 | | spearman_euclidean | 0.8581 | | pearson_dot | 0.697 | | spearman_dot | 0.7059 | | pearson_max | 0.8532 | | spearman_max | 0.8688 | #### Semantic Similarity * Dataset: `sts-dev-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.834 | | **spearman_cosine** | **0.8587** | | pearson_manhattan | 0.8352 | | spearman_manhattan | 0.8446 | | pearson_euclidean | 0.8387 | | spearman_euclidean | 0.8461 | | pearson_dot | 0.6579 | | spearman_dot | 0.6713 | | pearson_max | 0.8387 | | spearman_max | 0.8587 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.8337 | | **spearman_cosine** | **0.847** | | pearson_manhattan | 0.8485 | | spearman_manhattan | 0.847 | | pearson_euclidean | 0.8493 | | spearman_euclidean | 0.8475 | | pearson_dot | 0.6702 | | spearman_dot | 0.6526 | | pearson_max | 0.8493 | | spearman_max | 0.8475 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8326 | | **spearman_cosine** | **0.8468** | | pearson_manhattan | 0.8474 | | spearman_manhattan | 0.8463 | | pearson_euclidean | 0.8482 | | spearman_euclidean | 0.8466 | | pearson_dot | 0.6737 | | spearman_dot | 0.6572 | | pearson_max | 0.8482 | | spearman_max | 0.8468 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8226 | | **spearman_cosine** | **0.8403** | | pearson_manhattan | 0.8421 | | spearman_manhattan | 0.842 | | pearson_euclidean | 0.8435 | | spearman_euclidean | 0.8429 | | pearson_dot | 0.623 | | spearman_dot | 0.6062 | | pearson_max | 0.8435 | | spearman_max | 0.8429 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.815 | | **spearman_cosine** | **0.835** | | pearson_manhattan | 0.8352 | | spearman_manhattan | 0.8361 | | pearson_euclidean | 0.8376 | | spearman_euclidean | 0.8376 | | pearson_dot | 0.5958 | | spearman_dot | 0.5793 | | pearson_max | 0.8376 | | spearman_max | 0.8376 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.7981 | | **spearman_cosine** | **0.827** | | pearson_manhattan | 0.8239 | | spearman_manhattan | 0.8289 | | pearson_euclidean | 0.8279 | | spearman_euclidean | 0.8315 | | pearson_dot | 0.5206 | | spearman_dot | 0.5067 | | pearson_max | 0.8279 | | spearman_max | 0.8315 | ## Training Details ### Training Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 5,749 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| | A plane is taking off. | An air plane is taking off. | 1.0 | | A man is playing a large flute. | A man is playing a flute. | 0.76 | | A man is spreading shreded cheese on a pizza. | A man is spreading shredded cheese on an uncooked pizza. | 0.76 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### sentence-transformers/stsb * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) * Size: 1,500 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:--------------------------------------------------|:------------------------------------------------------|:------------------| | A man with a hard hat is dancing. | A man wearing a hard hat is dancing. | 1.0 | | A young child is riding a horse. | A child is riding a horse. | 0.95 | | A man is feeding a mouse to a snake. | The man is feeding a mouse to the snake. | 1.0 | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: False - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: None - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.2778 | 100 | 23.266 | 21.5517 | 0.8305 | 0.8355 | 0.8361 | 0.8157 | 0.8366 | - | - | - | - | - | | 0.5556 | 200 | 21.8736 | 21.6172 | 0.8327 | 0.8388 | 0.8446 | 0.8206 | 0.8453 | - | - | - | - | - | | 0.8333 | 300 | 21.6241 | 22.0565 | 0.8475 | 0.8538 | 0.8556 | 0.8345 | 0.8565 | - | - | - | - | - | | 1.1111 | 400 | 21.075 | 23.6719 | 0.8545 | 0.8581 | 0.8634 | 0.8435 | 0.8644 | - | - | - | - | - | | 1.3889 | 500 | 20.4122 | 22.5926 | 0.8592 | 0.8624 | 0.8650 | 0.8436 | 0.8656 | - | - | - | - | - | | 1.6667 | 600 | 20.6586 | 22.5999 | 0.8514 | 0.8563 | 0.8595 | 0.8389 | 0.8597 | - | - | - | - | - | | 1.9444 | 700 | 20.3262 | 22.2965 | 0.8582 | 0.8631 | 0.8666 | 0.8465 | 0.8667 | - | - | - | - | - | | 2.2222 | 800 | 19.7948 | 23.1844 | 0.8621 | 0.8659 | 0.8688 | 0.8499 | 0.8694 | - | - | - | - | - | | 2.5 | 900 | 19.2826 | 23.1351 | 0.8653 | 0.8687 | 0.8703 | 0.8547 | 0.8710 | - | - | - | - | - | | 2.7778 | 1000 | 19.1063 | 23.7141 | 0.8641 | 0.8672 | 0.8691 | 0.8531 | 0.8695 | - | - | - | - | - | | 3.0556 | 1100 | 19.4575 | 23.0055 | 0.8673 | 0.8702 | 0.8726 | 0.8574 | 0.8728 | - | - | - | - | - | | 3.3333 | 1200 | 18.0727 | 24.9288 | 0.8659 | 0.8692 | 0.8715 | 0.8565 | 0.8722 | - | - | - | - | - | | 3.6111 | 1300 | 18.1698 | 25.3114 | 0.8675 | 0.8701 | 0.8728 | 0.8576 | 0.8734 | - | - | - | - | - | | 3.8889 | 1400 | 18.2321 | 25.3777 | 0.8688 | 0.8714 | 0.8741 | 0.8587 | 0.8748 | - | - | - | - | - | | 4.0 | 1440 | - | - | - | - | - | - | - | 0.8350 | 0.8403 | 0.8468 | 0.8270 | 0.8470 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.020 kWh - **Carbon Emitted**: 0.008 kg of CO2 - **Hours Used**: 0.112 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.0.0.dev0 - Transformers: 4.41.0.dev0 - PyTorch: 2.3.0+cu121 - Accelerate: 0.26.1 - Datasets: 2.18.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```