--- language: - en - de tags: - nsp - next-sentence-prediction - gpt datasets: - wikipedia metrics: - accuracy --- # mGPT-nsp mGPT-nsp is fine-tuned for Next Sentence Prediction task on the [wikipedia dataset](https://huggingface.co/datasets/wikipedia) using [multilingual GPT](https://huggingface.co/THUMT/mGPT) model. It was introduced in this [paper](https://arxiv.org/abs/2307.07331) and first released on this page. ## Model description mGPT-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 11000 English and 11000 German Wikipedia articles. We use the same tokenization and vocabulary as the [mT5 model](https://huggingface.co/google/mt5-base). ## Intended uses - Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task) - See how to fine-tune an mGPT2 model using our [code](https://github.com/slds-lmu/stereotypes-multi/tree/main) - Check our [paper](https://arxiv.org/abs/2307.07331) to see its results ## How to use You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch: ### Necessary Initialization ```python from transformers import MT5Tokenizer, GPT2Model import torch from huggingface_hub import hf_hub_download class ModelNSP(torch.nn.Module): def __init__(self, pretrained_model="THUMT/mGPT"): super(ModelNSP, self).__init__() self.core_model = GPT2Model.from_pretrained(pretrained_model) self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, 300), torch.nn.Linear(300, 300), torch.nn.Linear(300, 2)) def forward(self, input_ids, attention_mask=None): return self.nsp_head(self.core_model(input_ids, attention_mask=attention_mask)[0].mean(dim=1)).softmax(dim=-1) model = torch.nn.DataParallel(ModelNSP().eval()) model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/mGPT-nsp", filename="model_weights.bin"))) tokenizer = MT5Tokenizer.from_pretrained("tolga-ozturk/mGPT-nsp") ``` ### Inference ```python batch_texts = [("In Italy, pizza is presented unsliced.", "The sky is blue."), ("In Italy, pizza is presented unsliced.", "However, it is served sliced in Turkey.")] encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first",padding=True, return_tensors="pt", return_attention_mask=True, max_length=256) print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1)) ``` ### Training Metrics ## BibTeX entry and citation info ```bibtex @misc{title={How Different Is Stereotypical Bias Across Languages?}, author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher}, year={2023}, eprint={2307.07331}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out [their huggingface page](https://huggingface.co/misoda) for other interesting works!