--- license: apache-2.0 language: - en datasets: - togethercomputer/RedPajama-Data-1T - Muennighoff/P3 - Muennighoff/natural-instructions --- # RedPajama-INCITE-Instruct-3B-v1 RedPajama-INCITE-Instruct-3B-v1 was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION. The model was fine-tuned for few-shot applications on the data of [GPT-JT](https://huggingface.co/togethercomputer/GPT-JT-6B-v1), with exclusion of tasks that overlap with the HELM core scenarios. ## Model Details - **Developed by**: Together Computer. - **Model type**: Language Model - **Language(s)**: English - **License**: Apache 2.0 - **Model Description**: A 2.8B parameter pretrained language model. # Quick Start Please note that the model requires `transformers` version >= 4.25.1. ## GPU Inference This requires a GPU with 8GB memory. ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1", torch_dtype=torch.float16) model = model.to('cuda:0') # infer prompt = "Q: The capital of France is?\nA:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Paris """ ``` ## GPU Inference in Int8 This requires a GPU with 6GB memory. To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command: ```bash pip install accelerate pip install bitsandbytes ``` Then you can run inference with int8 as follows: ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True) # infer prompt = "Q: The capital of France is?\nA:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Paris """ ``` ## CPU Inference ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Instruct-3B-v1", torch_dtype=torch.bfloat16) # infer prompt = "Q: The capital of France is?\nA:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Paris """ ``` Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference. # Uses ## Direct Use The model is intended for research purposes. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of dialogue models or language models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on dialogue models or language models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner. #### Out-of-Scope Use RedPajama-INCITE-Instruct-3B-v1 is a language model and may not perform well for other use cases outside of its intended scope. For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society. It is important to consider the limitations of the model and to only use it for its intended purpose. #### Misuse and Malicious Use RedPajama-INCITE-Instruct-3B-v1 is designed for language modeling. Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project. Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating fake news, misinformation, or propaganda - Promoting hate speech, discrimination, or violence against individuals or groups - Impersonating individuals or organizations without their consent - Engaging in cyberbullying or harassment - Defamatory content - Spamming or scamming - Sharing confidential or sensitive information without proper authorization - Violating the terms of use of the model or the data used to train it - Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming ## Limitations RedPajama-INCITE-Instruct-3B-v1, like other language models, has limitations that should be taken into consideration. For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot. ## Training **Training Data** Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) **Training Procedure** - **Hardware:** 8 A100 - **Optimizer:** Adam - **Gradient Accumulations**: 1 - **Num of Tokens:** 131M tokens - **Learning rate:** 1e-5 ## Community Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)