ppo-LunarLander-v2 / config.json
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e0ac75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e0ac7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e0ac7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e0ac7790>", "_build": "<function ActorCriticPolicy._build at 0x7fa5e0ac7820>", "forward": "<function ActorCriticPolicy.forward at 0x7fa5e0ac78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e0ac7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa5e0ac79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e0ac7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e0ac7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e0ac7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa5e0abda50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "seed": null, "action_noise": null, "start_time": 1652453380.0526502, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB/Ir17tsi6+EGUO+O2rTwjuuC6Y3KVPQAAgD8AAIA/WrHjvamEYj8IjM68Lyllvgw3Q704fz27AAAAAAAAAAC7yp6+30h8P8Pzf71+F4i+pNxfvpZXzj0AAAAAAAAAAJrp/bu4LrG724rdvC4TCT0LgJe8fyULvQAAgD8AAIA/M7ktvanvCrzvv4E9ToEkvb5nWb01Qgq+AACAPwAAgD+axyY8rz9YPcD9KL0O+wK+Dr2wuy/6NT0AAAAAAAAAAJq5Ujs1twc+IkcavpxiNb5lPZq95kYZOwAAAAAAAAAAG66dvp56ND8+/G4+p01dvjYo4rz7aLs8AAAAAAAAAABNO+i9B5bRPuhD+LxZdF++VoFPvREQQb0AAAAAAAAAAAC5mzyJohg/stPavRz+bb6DSsu8GNK+vAAAAAAAAAAAfQukPiXGgj9anI68BaOlvkjwWz6anKS8AAAAAAAAAABGEwo+E1coPxV0671MG3y+x6RPPXoDnr0AAAAAAAAAAM0Lbb1c42e6iP+uO9t3wbhPRBe6s/C9twAAgD8AAIA/TbIqPaRCqz2SdAM9bnxvviVsiz3k0LK8AAAAAAAAAACNN4e92bgGP5EhAj6O1ZO+cI6PPAlyqzwAAAAAAAAAAPNWmb2shzs+ZrY/PgDLQr6F0qs9uObbvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHeT1YFLOb0CUhpRSlIwBbJRNGwGMAXSUR0Cn7Z/nW8RMdX2UKGgGaAloD0MIyyvX22a3bkCUhpRSlGgVTXYBaBZHQKfttn9Nvfl1fZQoaAZoCWgPQwjwwWuX9r5xQJSGlFKUaBVNRgFoFkdAp+4hhScbznV9lChoBmgJaA9DCHAnEeHfvmpAlIaUUpRoFU06AWgWR0Cn7kT7VJ+VdX2UKGgGaAloD0MI+HDJcWccckCUhpRSlGgVTUoBaBZHQKfuW0l7dBV1fZQoaAZoCWgPQwjmlettc/RwQJSGlFKUaBVNOgFoFkdAp+8KsQumJnV9lChoBmgJaA9DCN0kBoGVQXBAlIaUUpRoFU0wAWgWR0Cn73vUKArhdX2UKGgGaAloD0MIXi9NEeAeckCUhpRSlGgVTUEBaBZHQKfvg/UONHZ1fZQoaAZoCWgPQwgJ4dHGkSVyQJSGlFKUaBVNOQFoFkdAp++qDTSb6XV9lChoBmgJaA9DCEN1c/E3km9AlIaUUpRoFU0mAWgWR0Cn8Ep2t+1CdX2UKGgGaAloD0MIR8mrcwx/bkCUhpRSlGgVTS8BaBZHQKfwY0Y0l7d1fZQoaAZoCWgPQwgIWoEhq/RwQJSGlFKUaBVNQwFoFkdAp/B4WgvlEXV9lChoBmgJaA9DCGlznNvEaHFAlIaUUpRoFU1QAWgWR0Cn8UTZQHiWdX2UKGgGaAloD0MIOE4K8x4HbkCUhpRSlGgVTTQBaBZHQKfxfKODJ2d1fZQoaAZoCWgPQwhD5zV2iR1xQJSGlFKUaBVNQwFoFkdAp/GST4cm0HV9lChoBmgJaA9DCFJEhlW8dGxAlIaUUpRoFU0nAWgWR0Cn8azFERapdX2UKGgGaAloD0MIwRn8/WIKRUCUhpRSlGgVS+1oFkdAp/IPjn3cpXV9lChoBmgJaA9DCELpCyHn+0NAlIaUUpRoFU0SAWgWR0Cn8l+k56t1dX2UKGgGaAloD0MIjubIyq/ccECUhpRSlGgVTRABaBZHQKfygrWiDdx1fZQoaAZoCWgPQwia7J+nAQJwQJSGlFKUaBVNPgFoFkdAp/KU0cfeUXV9lChoBmgJaA9DCJUMAFUc+XBAlIaUUpRoFU1SAWgWR0Cn8sWJJoTPdX2UKGgGaAloD0MIweEFEWkackCUhpRSlGgVTSgBaBZHQKf0D17pmmN1fZQoaAZoCWgPQwj600Z1upFwQJSGlFKUaBVNDwFoFkdAp/S9cIJJG3V9lChoBmgJaA9DCL/udOdJknJAlIaUUpRoFU1NAWgWR0Cn9LwLE1l5dX2UKGgGaAloD0MIP+PCgRDrcUCUhpRSlGgVTXIBaBZHQKf09va11GN1fZQoaAZoCWgPQwiDonkAi11xQJSGlFKUaBVNPAFoFkdAp/WKD/VAiXV9lChoBmgJaA9DCDUmxFySYHJAlIaUUpRoFU1NAWgWR0Cn9cb4SHuadX2UKGgGaAloD0MIKAr0iTz1cECUhpRSlGgVTZIBaBZHQKf2bdv863l1fZQoaAZoCWgPQwgOorWijd5wQJSGlFKUaBVNMgFoFkdAp/baU1Q663V9lChoBmgJaA9DCC9uowH8NnBAlIaUUpRoFU0xAWgWR0Cn9xSWJJoTdX2UKGgGaAloD0MI4fHtXYPlbkCUhpRSlGgVTVEBaBZHQKf3OphnanJ1fZQoaAZoCWgPQwiuLTwvlf1vQJSGlFKUaBVNTQFoFkdAp/d0pCrtFHV9lChoBmgJaA9DCJpcjIH1snFAlIaUUpRoFU02AWgWR0Cn95tlAeJYdX2UKGgGaAloD0MINez3xLrYbUCUhpRSlGgVTTEBaBZHQKf3+qPwNLF1fZQoaAZoCWgPQwhlqfV+IydvQJSGlFKUaBVNTQFoFkdAp/hOA9V3lnV9lChoBmgJaA9DCLPQzmkWAHBAlIaUUpRoFU1CAWgWR0Cn+FYCp3otdX2UKGgGaAloD0MILdFZZpGPbUCUhpRSlGgVTVIBaBZHQKf4zfnfVI91fZQoaAZoCWgPQwiUbeAOVAptQJSGlFKUaBVNLwFoFkdAp/miLCN0eXV9lChoBmgJaA9DCLhzYaSXdnFAlIaUUpRoFU00AWgWR0Cn+lgQ6IWQdX2UKGgGaAloD0MIjSWsjXEmckCUhpRSlGgVTT8BaBZHQKf6uxoqTbF1fZQoaAZoCWgPQwgTfT7KSB1yQJSGlFKUaBVNJwFoFkdAp/rVmWdEs3V9lChoBmgJaA9DCCuKV1nbOHJAlIaUUpRoFU1PAWgWR0Cn+tW8AaNudX2UKGgGaAloD0MIgxlTsAZtcECUhpRSlGgVTTgBaBZHQKf7392HLzR1fZQoaAZoCWgPQwghI6DCEQ1uQJSGlFKUaBVNJwFoFkdAp/wZXU6PsHV9lChoBmgJaA9DCJ1KBoCqPnJAlIaUUpRoFU0TAWgWR0Cn/CEIPbwjdX2UKGgGaAloD0MIkWRW73DVb0CUhpRSlGgVTR4BaBZHQKf8f/sE7nx1fZQoaAZoCWgPQwjhehSuR/FuQJSGlFKUaBVNQgFoFkdAp/y5dOZb6nV9lChoBmgJaA9DCNDSFWzj7XFAlIaUUpRoFU1ZAWgWR0Cn/MxDb8FZdX2UKGgGaAloD0MIq5Se6WXmcECUhpRSlGgVTYoBaBZHQKf81a/RE4N1fZQoaAZoCWgPQwjmz7cFizhwQJSGlFKUaBVNPAFoFkdAp/1ehK15SnV9lChoBmgJaA9DCP34S4u6z3JAlIaUUpRoFU1OAWgWR0Cn/fQqAjIJdX2UKGgGaAloD0MIyEPf3UrgbkCUhpRSlGgVTTYBaBZHQKf+FNHH3lF1fZQoaAZoCWgPQwiLpx5pcAhyQJSGlFKUaBVNZwFoFkdAqAhcHhS9/XV9lChoBmgJaA9DCC3RWWaRa3FAlIaUUpRoFU02AWgWR0CoCMztLL6ldX2UKGgGaAloD0MIQ6ooXiUHcUCUhpRSlGgVTSQBaBZHQKgJHvhIe5p1fZQoaAZoCWgPQwjNc0S+S+VxQJSGlFKUaBVNLQFoFkdAqAmPoNd7fHV9lChoBmgJaA9DCDV+4ZWkMGxAlIaUUpRoFU01AWgWR0CoCcTK1XvIdX2UKGgGaAloD0MIL1BSYEHacUCUhpRSlGgVTUsBaBZHQKgKIgkC3gF1fZQoaAZoCWgPQwjWVuwvu41LQJSGlFKUaBVNGwFoFkdAqAs1ZaFEiXV9lChoBmgJaA9DCIkLQKN0jWpAlIaUUpRoFU1XAWgWR0CoC2YyfthNdX2UKGgGaAloD0MIV3cstgkjckCUhpRSlGgVTU4BaBZHQKgLgL/CIk91fZQoaAZoCWgPQwjogvqWOaduQJSGlFKUaBVNUgFoFkdAqAwqROk+HXV9lChoBmgJaA9DCFmkiXeAkHBAlIaUUpRoFU00AWgWR0CoDFyG8EmqdX2UKGgGaAloD0MImn0eozzEcECUhpRSlGgVTVYBaBZHQKgMXSvTw2F1fZQoaAZoCWgPQwgmHHqLR0ZxQJSGlFKUaBVNbQFoFkdAqAxs/r0J4XV9lChoBmgJaA9DCAGloUYhLm5AlIaUUpRoFU0/AWgWR0CoDTHGCI1tdX2UKGgGaAloD0MIQx7BjVQmcECUhpRSlGgVTSsBaBZHQKgNT9ph4MZ1fZQoaAZoCWgPQwhGeHsQghhxQJSGlFKUaBVNHQFoFkdAqA2oqRU3oHV9lChoBmgJaA9DCBowSPo0dnBAlIaUUpRoFU1lAWgWR0CoDfvS+g14dX2UKGgGaAloD0MIVRaFXZSOcECUhpRSlGgVTSgBaBZHQKgOuWfseGR1fZQoaAZoCWgPQwiH4SNiyu5tQJSGlFKUaBVNWgFoFkdAqA8UTzundnV9lChoBmgJaA9DCOmY84x9w21AlIaUUpRoFU06AWgWR0CoD0U3fhuPdX2UKGgGaAloD0MI1SR4QxqrbkCUhpRSlGgVTTgBaBZHQKgPmEt/WlN1fZQoaAZoCWgPQwgSwTi49PdwQJSGlFKUaBVNHQFoFkdAqBAjah6By3V9lChoBmgJaA9DCFyOVyD6WW9AlIaUUpRoFU0iAWgWR0CoEGGjj7yhdX2UKGgGaAloD0MImxw+6URvcECUhpRSlGgVTSEBaBZHQKgQblEJBxB1fZQoaAZoCWgPQwiVC5V/7XZyQJSGlFKUaBVNoAJoFkdAqBE15le4TnV9lChoBmgJaA9DCA7ZQLrYvHJAlIaUUpRoFU0uAWgWR0CoEYPVd5Y6dX2UKGgGaAloD0MIeSRenk6ha0CUhpRSlGgVTUIBaBZHQKgRzmYBvJl1fZQoaAZoCWgPQwj8x0J0iMVwQJSGlFKUaBVNIgFoFkdAqBIdCHARCnV9lChoBmgJaA9DCN+mP/vRznFAlIaUUpRoFU0IAWgWR0CoEnWRRuTBdX2UKGgGaAloD0MIO6buym4McECUhpRSlGgVTXkBaBZHQKgSly8zyjJ1fZQoaAZoCWgPQwinJVZGI6ttQJSGlFKUaBVNPQFoFkdAqBK1MVUMonV9lChoBmgJaA9DCDzZzYx+DXFAlIaUUpRoFU1/AWgWR0CoEuIGhVU/dX2UKGgGaAloD0MIBKkUO5p4bECUhpRSlGgVTTkBaBZHQKgUD/4Irvt1fZQoaAZoCWgPQwhKsg5HlwhwQJSGlFKUaBVNTAFoFkdAqBTLD/EOy3V9lChoBmgJaA9DCN5Wem12v3FAlIaUUpRoFU0tAWgWR0CoFM5ooNNKdX2UKGgGaAloD0MIt7dbkoO4ckCUhpRSlGgVTUgBaBZHQKgU7vLHMll1fZQoaAZoCWgPQwhjesISj6RuQJSGlFKUaBVNKgFoFkdAqBVZ1s+FDnV9lChoBmgJaA9DCEQ0uoMY4HBAlIaUUpRoFU08AWgWR0CoFfO5SWJKdX2UKGgGaAloD0MIVvFG5hF5b0CUhpRSlGgVTeYBaBZHQKgWFZZB9kV1fZQoaAZoCWgPQwi0OGOYk1VvQJSGlFKUaBVNQAFoFkdAqBYTbSJCSnV9lChoBmgJaA9DCIf7yK2JUHBAlIaUUpRoFU0tAWgWR0CoForGrCFcdX2UKGgGaAloD0MIF5tWCgERcECUhpRSlGgVTTQBaBZHQKgXQ/Z/Tb51fZQoaAZoCWgPQwjGwhA5/e5xQJSGlFKUaBVNRgFoFkdAqBdLOTq0MXV9lChoBmgJaA9DCMwKRbofP29AlIaUUpRoFU0fAWgWR0CoF6mjKxLTdX2UKGgGaAloD0MIKxiV1IlJbUCUhpRSlGgVTSQBaBZHQKgX4C1Z1V51fZQoaAZoCWgPQwgEWOTXj+hvQJSGlFKUaBVNRgFoFkdAqBgzbUPQOXV9lChoBmgJaA9DCMTuO4ZHAnFAlIaUUpRoFU1ZAWgWR0CoGDBrN4Z/dX2UKGgGaAloD0MIIorJG6AScECUhpRSlGgVTTcBaBZHQKgYVJYkmhN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.3.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.19.0"}}