--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: mdeberta-v3-base-qqp-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8987880286915657 - name: F1 type: f1 value: 0.8654655444502892 --- # mdeberta-v3-base-qqp-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2790 - Accuracy: 0.8988 - F1: 0.8655 - Combined Score: 0.8821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3099 | 0.44 | 5000 | 0.2921 | 0.8751 | 0.8326 | 0.8539 | | 0.269 | 0.88 | 10000 | 0.2732 | 0.8820 | 0.8378 | 0.8599 | | 0.2421 | 1.32 | 15000 | 0.2795 | 0.8894 | 0.8520 | 0.8707 | | 0.2198 | 1.76 | 20000 | 0.2674 | 0.8937 | 0.8566 | 0.8751 | | 0.188 | 2.2 | 25000 | 0.2778 | 0.8964 | 0.8602 | 0.8783 | | 0.1916 | 2.64 | 30000 | 0.2861 | 0.8977 | 0.8636 | 0.8807 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0