--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small KO results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: ko split: test args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 0.9687814702920443 --- # Whisper Small KO This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3779 - Cer: 1.0055 - Wer: 0.9688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.2858 | 5.26 | 100 | 0.4512 | 1.1681 | 0.9869 | | 0.0058 | 10.53 | 200 | 0.3578 | 1.0637 | 0.8610 | | 0.0012 | 15.79 | 300 | 0.3699 | 0.9535 | 0.9225 | | 0.0009 | 21.05 | 400 | 0.3759 | 1.0149 | 0.9809 | | 0.0008 | 26.32 | 500 | 0.3779 | 1.0055 | 0.9688 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1