import requests from PIL import Image import torch from io import BytesIO import base64 import time import torch from transformers import StoppingCriteria import math import ast # Model Constants IGNORE_INDEX = -100 IMAGE_TOKEN_INDEX = -200 DEFAULT_IMAGE_TOKEN = "" DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" IMAGE_PLACEHOLDER = "" import dataclasses from enum import auto, Enum from typing import List, Tuple class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() TINY_LLAMA = auto() QWEN_2 = auto() @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None version: str = "Unknown" skip_next: bool = False def get_prompt(self): messages = self.messages if len(messages) > 0 and type(messages[0][1]) is tuple: messages = self.messages.copy() init_role, init_msg = messages[0].copy() init_msg = init_msg[0].replace("", "").strip() if 'mmtag' in self.version: messages[0] = (init_role, init_msg) messages.insert(0, (self.roles[0], "")) messages.insert(1, (self.roles[1], "Received.")) else: messages[0] = (init_role, "\n" + init_msg) if self.sep_style == SeparatorStyle.SINGLE: ret = self.system + self.sep for role, message in messages: if message: if type(message) is tuple: message, _, _ = message ret += role + ": " + message + self.sep else: ret += role + ":" elif self.sep_style == SeparatorStyle.TWO: seps = [self.sep, self.sep2] ret = self.system + seps[0] for i, (role, message) in enumerate(messages): if message: if type(message) is tuple: message, _, _ = message ret += role + ": " + message + seps[i % 2] else: ret += role + ":" elif self.sep_style == SeparatorStyle.MPT: ret = self.system + self.sep for role, message in messages: if message: if type(message) is tuple: message, _, _ = message ret += role + message + self.sep else: ret += role elif self.sep_style == SeparatorStyle.LLAMA_2: wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n" if len(msg) > 0 else msg wrap_inst = lambda msg: f"[INST] {msg} [/INST]" ret = "" for i, (role, message) in enumerate(messages): if i == 0: assert message, "first message should not be none" assert role == self.roles[0], "first message should come from user" if message: if type(message) is tuple: message, _, _ = message if i == 0: message = wrap_sys(self.system) + message if i % 2 == 0: message = wrap_inst(message) ret += self.sep + message else: ret += " " + message + " " + self.sep2 else: ret += "" ret = ret.lstrip(self.sep) elif self.sep_style == SeparatorStyle.TINY_LLAMA: sep = "" wrap_sys = lambda msg: f"<|system|>\n{msg}\n" wrap_user = lambda msg: f"<|user|>\n{msg}\n" wrap_assistant = lambda msg: f"<|assistant|>\n{msg}" ret = "" for i, (role, message) in enumerate(messages): if i == 0: assert message, "first message should not be none" assert role == self.roles[0], "first message should come from user" if message: if type(message) is tuple: message, _, _ = message if i % 2 == 0: message = wrap_user(message) if i == 0: message = wrap_sys(self.system) + message ret += self.sep + message else: message = wrap_assistant(message) + self.sep2 ret += message else: ret += "<|assistant|>\n" ret = ret.lstrip(self.sep) elif self.sep_style == SeparatorStyle.QWEN_2: ret = self.system + self.sep for role, message in messages: if message: if type(message) is tuple: message, _, _ = message ret += role + message + self.sep else: ret += role elif self.sep_style == SeparatorStyle.PLAIN: seps = [self.sep, self.sep2] ret = self.system for i, (role, message) in enumerate(messages): if message: if type(message) is tuple: message, _, _ = message ret += message + seps[i % 2] else: ret += "" else: raise ValueError(f"Invalid style: {self.sep_style}") return ret def append_message(self, role, message): self.messages.append([role, message]) def get_images(self, return_pil=False): images = [] for i, (role, msg) in enumerate(self.messages[self.offset:]): if i % 2 == 0: if type(msg) is tuple: import base64 from io import BytesIO from PIL import Image msg, image, image_process_mode = msg if image_process_mode == "Pad": def expand2square(pil_img, background_color=(122, 116, 104)): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image) elif image_process_mode in ["Default", "Crop"]: pass elif image_process_mode == "Resize": image = image.resize((336, 336)) else: raise ValueError(f"Invalid image_process_mode: {image_process_mode}") max_hw, min_hw = max(image.size), min(image.size) aspect_ratio = max_hw / min_hw max_len, min_len = 800, 400 shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) longest_edge = int(shortest_edge * aspect_ratio) W, H = image.size if longest_edge != max(image.size): if H > W: H, W = longest_edge, shortest_edge else: H, W = shortest_edge, longest_edge image = image.resize((W, H)) if return_pil: images.append(image) else: buffered = BytesIO() image.save(buffered, format="PNG") img_b64_str = base64.b64encode(buffered.getvalue()).decode() images.append(img_b64_str) return images def to_gradio_chatbot(self): ret = [] for i, (role, msg) in enumerate(self.messages[self.offset:]): if i % 2 == 0: if type(msg) is tuple: import base64 from io import BytesIO msg, image, image_process_mode = msg max_hw, min_hw = max(image.size), min(image.size) aspect_ratio = max_hw / min_hw max_len, min_len = 800, 400 shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) longest_edge = int(shortest_edge * aspect_ratio) W, H = image.size if H > W: H, W = longest_edge, shortest_edge else: H, W = shortest_edge, longest_edge image = image.resize((W, H)) buffered = BytesIO() image.save(buffered, format="JPEG") img_b64_str = base64.b64encode(buffered.getvalue()).decode() img_str = f'user upload image' msg = img_str + msg.replace('', '').strip() ret.append([msg, None]) else: ret.append([msg, None]) else: ret[-1][-1] = msg return ret def copy(self): return Conversation( system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version) def dict(self): if len(self.get_images()) > 0: return { "system": self.system, "roles": self.roles, "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], "offset": self.offset, "sep": self.sep, "sep2": self.sep2, } return { "system": self.system, "roles": self.roles, "messages": self.messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, } conv_phi_v0 = Conversation( system="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=("USER", "ASSISTANT"), version="phi", messages=(), offset=0, sep_style=SeparatorStyle.TWO, sep=" ", sep2="<|endoftext|>", ) def select_best_resolution(original_size, possible_resolutions): """ Selects the best resolution from a list of possible resolutions based on the original size. Args: original_size (tuple): The original size of the image in the format (width, height). possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. Returns: tuple: The best fit resolution in the format (width, height). """ original_width, original_height = original_size best_fit = None max_effective_resolution = 0 min_wasted_resolution = float('inf') for width, height in possible_resolutions: scale = min(width / original_width, height / original_height) downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) wasted_resolution = (width * height) - effective_resolution if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): max_effective_resolution = effective_resolution min_wasted_resolution = wasted_resolution best_fit = (width, height) return best_fit ## added by llava-1.6 def resize_and_pad_image(image, target_resolution): """ Resize and pad an image to a target resolution while maintaining aspect ratio. Args: image (PIL.Image.Image): The input image. target_resolution (tuple): The target resolution (width, height) of the image. Returns: PIL.Image.Image: The resized and padded image. """ original_width, original_height = image.size target_width, target_height = target_resolution scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) # Resize the image resized_image = image.resize((new_width, new_height)) new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 new_image.paste(resized_image, (paste_x, paste_y)) return new_image ## added by llava-1.6 def divide_to_patches(image, patch_size): """ Divides an image into patches of a specified size. Args: image (PIL.Image.Image): The input image. patch_size (int): The size of each patch. Returns: list: A list of PIL.Image.Image objects representing the patches. """ patches = [] width, height = image.size for i in range(0, height, patch_size): for j in range(0, width, patch_size): box = (j, i, j + patch_size, i + patch_size) patch = image.crop(box) patches.append(patch) return patches ## added by llava-1.6 def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (tuple): The size of the input image in the format (width, height). grid_pinpoints (str): A string representation of a list of possible resolutions. patch_size (int): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) width, height = select_best_resolution(image_size, possible_resolutions) return width // patch_size, height // patch_size ## added by llava-1.6 def process_anyres_image(image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions) image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image_padded, processor.crop_size['height']) image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) image_patches = [image_original_resize] + patches image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == 'pad': for image in images: image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] new_images.append(image) elif image_aspect_ratio == "anyres": for image in images: image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs) def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image