tinybee commited on
Commit
f7b226c
1 Parent(s): b3caabb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: gopdatastt_add_transformer
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # gopdatastt_add_transformer
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0920
18
+ - Wer: 0.1617
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 3.1709 | 1.05 | 500 | 0.1453 | 0.2194 |
52
+ | 0.3131 | 2.11 | 1000 | 0.1094 | 0.2055 |
53
+ | 0.276 | 3.16 | 1500 | 0.1198 | 0.1998 |
54
+ | 0.2416 | 4.21 | 2000 | 0.1873 | 0.2026 |
55
+ | 0.2093 | 5.26 | 2500 | 0.1392 | 0.1974 |
56
+ | 0.1987 | 6.32 | 3000 | 0.1123 | 0.1944 |
57
+ | 0.1714 | 7.37 | 3500 | 0.1089 | 0.1890 |
58
+ | 0.1634 | 8.42 | 4000 | 0.1007 | 0.1863 |
59
+ | 0.1459 | 9.47 | 4500 | 0.1340 | 0.1864 |
60
+ | 0.1461 | 10.53 | 5000 | 0.1016 | 0.1874 |
61
+ | 0.1316 | 11.58 | 5500 | 0.1110 | 0.1891 |
62
+ | 0.1318 | 12.63 | 6000 | 0.0942 | 0.1855 |
63
+ | 0.1084 | 13.68 | 6500 | 0.0992 | 0.1827 |
64
+ | 0.1064 | 14.74 | 7000 | 0.1010 | 0.1801 |
65
+ | 0.1059 | 15.79 | 7500 | 0.1173 | 0.1834 |
66
+ | 0.094 | 16.84 | 8000 | 0.1096 | 0.1815 |
67
+ | 0.0918 | 17.89 | 8500 | 0.1046 | 0.1780 |
68
+ | 0.0874 | 18.95 | 9000 | 0.1103 | 0.1788 |
69
+ | 0.0813 | 20.0 | 9500 | 0.1065 | 0.1768 |
70
+ | 0.0753 | 21.05 | 10000 | 0.0997 | 0.1747 |
71
+ | 0.0729 | 22.11 | 10500 | 0.1053 | 0.1748 |
72
+ | 0.0655 | 23.16 | 11000 | 0.1042 | 0.1726 |
73
+ | 0.0647 | 24.21 | 11500 | 0.0960 | 0.1746 |
74
+ | 0.0581 | 25.26 | 12000 | 0.1060 | 0.1733 |
75
+ | 0.0573 | 26.32 | 12500 | 0.0972 | 0.1706 |
76
+ | 0.0524 | 27.37 | 13000 | 0.0963 | 0.1725 |
77
+ | 0.0577 | 28.42 | 13500 | 0.0920 | 0.1696 |
78
+ | 0.0488 | 29.47 | 14000 | 0.0942 | 0.1686 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 2.5.1+cu121
85
+ - Datasets 1.18.3
86
+ - Tokenizers 0.20.3