update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: gopdatastt_add_transformer
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# gopdatastt_add_transformer
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0920
|
18 |
+
- Wer: 0.1617
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 30
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 3.1709 | 1.05 | 500 | 0.1453 | 0.2194 |
|
52 |
+
| 0.3131 | 2.11 | 1000 | 0.1094 | 0.2055 |
|
53 |
+
| 0.276 | 3.16 | 1500 | 0.1198 | 0.1998 |
|
54 |
+
| 0.2416 | 4.21 | 2000 | 0.1873 | 0.2026 |
|
55 |
+
| 0.2093 | 5.26 | 2500 | 0.1392 | 0.1974 |
|
56 |
+
| 0.1987 | 6.32 | 3000 | 0.1123 | 0.1944 |
|
57 |
+
| 0.1714 | 7.37 | 3500 | 0.1089 | 0.1890 |
|
58 |
+
| 0.1634 | 8.42 | 4000 | 0.1007 | 0.1863 |
|
59 |
+
| 0.1459 | 9.47 | 4500 | 0.1340 | 0.1864 |
|
60 |
+
| 0.1461 | 10.53 | 5000 | 0.1016 | 0.1874 |
|
61 |
+
| 0.1316 | 11.58 | 5500 | 0.1110 | 0.1891 |
|
62 |
+
| 0.1318 | 12.63 | 6000 | 0.0942 | 0.1855 |
|
63 |
+
| 0.1084 | 13.68 | 6500 | 0.0992 | 0.1827 |
|
64 |
+
| 0.1064 | 14.74 | 7000 | 0.1010 | 0.1801 |
|
65 |
+
| 0.1059 | 15.79 | 7500 | 0.1173 | 0.1834 |
|
66 |
+
| 0.094 | 16.84 | 8000 | 0.1096 | 0.1815 |
|
67 |
+
| 0.0918 | 17.89 | 8500 | 0.1046 | 0.1780 |
|
68 |
+
| 0.0874 | 18.95 | 9000 | 0.1103 | 0.1788 |
|
69 |
+
| 0.0813 | 20.0 | 9500 | 0.1065 | 0.1768 |
|
70 |
+
| 0.0753 | 21.05 | 10000 | 0.0997 | 0.1747 |
|
71 |
+
| 0.0729 | 22.11 | 10500 | 0.1053 | 0.1748 |
|
72 |
+
| 0.0655 | 23.16 | 11000 | 0.1042 | 0.1726 |
|
73 |
+
| 0.0647 | 24.21 | 11500 | 0.0960 | 0.1746 |
|
74 |
+
| 0.0581 | 25.26 | 12000 | 0.1060 | 0.1733 |
|
75 |
+
| 0.0573 | 26.32 | 12500 | 0.0972 | 0.1706 |
|
76 |
+
| 0.0524 | 27.37 | 13000 | 0.0963 | 0.1725 |
|
77 |
+
| 0.0577 | 28.42 | 13500 | 0.0920 | 0.1696 |
|
78 |
+
| 0.0488 | 29.47 | 14000 | 0.0942 | 0.1686 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.17.0
|
84 |
+
- Pytorch 2.5.1+cu121
|
85 |
+
- Datasets 1.18.3
|
86 |
+
- Tokenizers 0.20.3
|