--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: tingtone/jq_emo_distilbert model-index: - name: jq_emo_distilbert results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.9385 name: Accuracy --- # jq_emo_distilbert This model is a fine-tuned version of [tingtone/jq_emo_distilbert](https://huggingface.co/tingtone/jq_emo_distilbert) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3185 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1042 | 1.0 | 1000 | 0.1816 | 0.932 | | 0.0998 | 2.0 | 2000 | 0.1799 | 0.934 | | 0.0957 | 3.0 | 3000 | 0.2015 | 0.935 | | 0.0846 | 4.0 | 4000 | 0.2129 | 0.9335 | | 0.0943 | 5.0 | 5000 | 0.2215 | 0.935 | | 0.075 | 6.0 | 6000 | 0.2627 | 0.9375 | | 0.0607 | 7.0 | 7000 | 0.2908 | 0.9345 | | 0.0636 | 8.0 | 8000 | 0.3207 | 0.935 | | 0.0953 | 9.0 | 9000 | 0.3165 | 0.936 | | 0.0748 | 10.0 | 10000 | 0.3185 | 0.9385 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3