File size: 4,940 Bytes
8ad827d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for mobilenetv4_conv_large.e500_r256_in1k
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
Trained with `timm` scripts using hyper-parameters (mostly) similar to those in the paper.
NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 32.6
- GMACs: 2.9
- Activations (M): 12.1
- Image size: train = 256 x 256, test = 320 x 320
- **Dataset:** ImageNet-1k
- **Papers:**
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mobilenetv4_conv_large.e500_r256_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_conv_large.e500_r256_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 24, 128, 128])
# torch.Size([1, 48, 64, 64])
# torch.Size([1, 96, 32, 32])
# torch.Size([1, 192, 16, 16])
# torch.Size([1, 960, 8, 8])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_conv_large.e500_r256_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 960, 8, 8) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
### By Top-1
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|-------------------------------------------|------|--------|------|--------|-----------|--------|
|mobilenetv4_conv_large.e500_r256_in1k |82.674|17.326 |96.31 |3.69 |32.59 |320 |
|mobilenetv4_conv_large.e500_r256_in1k |81.862|18.138 |95.69 |4.31 |32.59 |256 |
|mobilenetv4_hybrid_medium.e500_r224_in1k |81.276|18.724 |95.742|4.258 |11.07 |256 |
|mobilenetv4_conv_medium.e500_r256_in1k |80.858|19.142 |95.768|4.232 |9.72 |320 |
|mobilenetv4_hybrid_medium.e500_r224_in1k |80.442|19.558 |95.38 |4.62 |11.07 |224 |
|mobilenetv4_conv_blur_medium.e500_r224_in1k|80.142|19.858 |95.298|4.702 |9.72 |256 |
|mobilenetv4_conv_medium.e500_r256_in1k |79.928|20.072 |95.184|4.816 |9.72 |256 |
|mobilenetv4_conv_medium.e500_r224_in1k |79.808|20.192 |95.186|4.814 |9.72 |256 |
|mobilenetv4_conv_blur_medium.e500_r224_in1k|79.438|20.562 |94.932|5.068 |9.72 |224 |
|mobilenetv4_conv_medium.e500_r224_in1k |79.094|20.906 |94.77 |5.23 |9.72 |224 |
|mobilenetv4_conv_small.e1200_r224_in1k |74.292|25.708 |92.116|7.884 |3.77 |256 |
|mobilenetv4_conv_small.e1200_r224_in1k |73.454|26.546 |91.34 |8.66 |3.77 |224 |
|