--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k - imagenet-22k --- # Model card for hgnet_small.ssld_in1k A HGNet (High Performance GPU Net) image classification model. Trained by model authors on mined ImageNet-22k and ImageNet-1k using SSLD distillation. Please see details at https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 24.4 - GMACs: 8.5 - Activations (M): 8.8 - Image size: train = 224 x 224, test = 288 x 288 - **Pretrain Dataset:** ImageNet-22k - **Dataset:** ImageNet-1k - **Papers:** - Model paper unknown: TBD - Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones: https://arxiv.org/abs/2103.05959 - **Original:** https://github.com/PaddlePaddle/PaddleClas ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('hgnet_small.ssld_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hgnet_small.ssld_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 768, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hgnet_small.ssld_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison ### By Top-1 ## Citation ```bibtex @article{cui2021beyond, title={Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones}, author={Cui, Cheng and Guo, Ruoyu and Du, Yuning and He, Dongliang and Li, Fu and Wu, Zewu and Liu, Qiwen and Wen, Shilei and Huang, Jizhou and Hu, Xiaoguang and others}, journal={arXiv preprint arXiv:2103.05959}, year={2021} } ```