--- license: apache-2.0 library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for efficientformerv2_l.snap_dist_in1k A EfficientFormer-V2 image classification model. Pretrained with distillation on ImageNet-1k. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 26.3 - GMACs: 2.6 - Activations (M): 18.5 - Image size: 224 x 224 - **Original:** https://github.com/snap-research/EfficientFormer - **Papers:** - Rethinking Vision Transformers for MobileNet Size and Speed: https://arxiv.org/abs/2212.08059 - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('efficientformerv2_l.snap_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'efficientformerv2_l.snap_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'efficientformerv2_l.snap_dist_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for efficientformerv2_l: # torch.Size([2, 40, 56, 56]) # torch.Size([2, 80, 28, 28]) # torch.Size([2, 192, 14, 14]) # torch.Size([2, 384, 7, 7]) print(o.shape) ``` ## Model Comparison |model |top1 |top5 |param_count|img_size| |-----------------------------------|------|------|-----------|--------| |efficientformerv2_l.snap_dist_in1k |83.628|96.54 |26.32 |224 | |efficientformer_l7.snap_dist_in1k |83.368|96.534|82.23 |224 | |efficientformer_l3.snap_dist_in1k |82.572|96.24 |31.41 |224 | |efficientformerv2_s2.snap_dist_in1k|82.128|95.902|12.71 |224 | |efficientformer_l1.snap_dist_in1k |80.496|94.984|12.29 |224 | |efficientformerv2_s1.snap_dist_in1k|79.698|94.698|6.19 |224 | |efficientformerv2_s0.snap_dist_in1k|76.026|92.77 |3.6 |224 | ## Citation ```bibtex @article{li2022rethinking, title={Rethinking Vision Transformers for MobileNet Size and Speed}, author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian}, journal={arXiv preprint arXiv:2212.08059}, year={2022} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```