timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 15,838 Bytes
10e5c5e
abe1ce5
 
10e5c5e
 
 
0780f73
 
 
10e5c5e
 
 
 
 
 
 
0780f73
 
 
 
 
 
 
 
 
 
10e5c5e
0780f73
 
 
 
 
 
 
dadcee7
 
 
0780f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcee7
 
 
0780f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcee7
 
 
 
 
 
0780f73
 
 
 
 
 
 
 
 
dadcee7
 
 
0780f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcee7
0780f73
 
dadcee7
10e5c5e
0780f73
 
dadcee7
0780f73
 
 
dadcee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0780f73
 
 
10e5c5e
 
 
 
 
 
 
0780f73
 
 
 
 
 
 
 
dadcee7
0780f73
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
license: cc-by-nc-4.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
- imagenet-1k
---
# Model card for convnextv2_huge.fcmae_ft_in22k_in1k_512

A ConvNeXt-V2 image classification model. Pretrained with a fully convolutional masked autoencoder framework (FCMAE) and fine-tuned on ImageNet-22k and then ImageNet-1k.

## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 660.3
  - GMACs: 600.8
  - Activations (M): 413.1
  - Image size: 512 x 512
- **Papers:**
  - ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: https://arxiv.org/abs/2301.00808
- **Original:** https://github.com/facebookresearch/ConvNeXt-V2
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** ImageNet-1k

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('convnextv2_huge.fcmae_ft_in22k_in1k_512', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnextv2_huge.fcmae_ft_in22k_in1k_512',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 352, 128, 128])
    #  torch.Size([1, 704, 64, 64])
    #  torch.Size([1, 1408, 32, 32])
    #  torch.Size([1, 2816, 16, 16])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnextv2_huge.fcmae_ft_in22k_in1k_512',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2816, 16, 16) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).

All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.

| model                                                                                                                        |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
| [convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)               |88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |
| [convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)               |88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k)         |88.612|98.704|256     |846.47     |198.09|124.45|122.45         |256       |
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384)             |88.312|98.578|384     |200.13     |101.11|126.74|196.84         |256       |
| [convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)             |88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320)             |87.968|98.47 |320     |200.13     |70.21 |88.02 |283.42         |256       |
| [convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)                     |87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
| [convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)               |87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
| [convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)                       |87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
| [convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k) |87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
| [convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)                     |87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384)                   |87.138|98.212|384     |88.59      |45.21 |84.49 |365.47         |256       |
| [convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)                             |87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
| [convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)                         |86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
| [convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)                       |86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
| [convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)                               |86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
| [convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)     |86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k)                           |86.344|97.97 |256     |88.59      |20.09 |37.55 |816.14         |256       |
| [convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)                                   |86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
| [convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)                             |86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)           |86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
| [convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)                                 |85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
| [convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)                       |85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
| [convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)                                 |85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
| [convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)                                     |85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
| [convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)                               |85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
| [convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)               |85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
| [convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)                                   |84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
| [convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)                               |84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
| [convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)                                                 |84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
| [convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)                                       |84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
| [convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)                         |84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
| [convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)                       |83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
| [convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)                                                   |83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
| [convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)               |83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
| [convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)                                                 |83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
| [convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)                                   |82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
| [convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)                                 |82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
| [convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)                                       |82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
| [convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)                                         |82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
| [convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)                                                   |82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
| [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)                       |82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
| [convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)                                   |81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
| [convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)                                         |80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
| [convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)                                                 |80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
| [convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)                                   |80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
| [convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)                                                   |79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
| [convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)                                           |79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
| [convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)                                 |78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
| [convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)                                         |77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
| [convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)                                                 |77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
| [convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)                                   |76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
| [convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)                                           |75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
| [convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)                                                   |75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |

## Citation
```bibtex
@article{Woo2023ConvNeXtV2,
  title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
  author={Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon and Saining Xie},
  year={2023},
  journal={arXiv preprint arXiv:2301.00808},
}
```
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```