--- language: en library_name: mlsae license: mit tags: - arxiv:2409.04185 - model_hub_mixin - pytorch_model_hub_mixin --- # Model Card for tim-lawson/mlsae-gemma-2-2b-x64-k32 A Multi-Layer Sparse Autoencoder (MLSAE) trained on the residual stream activation vectors from [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) with an expansion factor of R = 64 and sparsity k = 32, over 1 billion tokens from [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted). This model is a PyTorch TopKSAE module, which does not include the underlying transformer. ### Model Sources - **Repository:** - **Paper:** - **Weights & Biases:** ## Citation **BibTeX:** ```bibtex @misc{lawson_residual_2024, title = {Residual {{Stream Analysis}} with {{Multi-Layer SAEs}}}, author = {Lawson, Tim and Farnik, Lucy and Houghton, Conor and Aitchison, Laurence}, year = {2024}, month = oct, number = {arXiv:2409.04185}, eprint = {2409.04185}, primaryclass = {cs}, publisher = {arXiv}, doi = {10.48550/arXiv.2409.04185}, urldate = {2024-10-08}, archiveprefix = {arXiv} } ```