--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_keras_callback model-index: - name: t5-small-mmlu-qa2a results: [] --- # t5-small-mmlu-qa2a This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2046 - Validation Loss: 0.2880 - Epoch: 1
{'eval_loss': 3.1777148246765137, 'eval_bleu': 8.258012778244474, 'eval_rouge1': 19.05, 'eval_rouge2': 6.45, 'eval_rougeL': 17.73, 'eval_rougeLsum': 17.73, 'eval_exact': 0.0010739490641301012, 'eval_runtime': 155.1163, 'eval_samples_per_second': 84.04, 'eval_steps_per_second': 2.63}## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4413 | 0.2854 | 0 | | 0.2046 | 0.2880 | 1 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3