--- license: apache-2.0 base_model: Visual-Attention-Network/van-tiny tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: teacher-status-van-tiny-256 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6404494382022472 --- # teacher-status-van-tiny-256 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5809 - Accuracy: 0.6404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6898 | 0.96 | 12 | 0.6678 | 0.5955 | | 0.6661 | 2.0 | 25 | 0.6087 | 0.6236 | | 0.6328 | 2.88 | 36 | 0.5809 | 0.6404 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0