|
--- |
|
language: |
|
- zh |
|
- en |
|
--- |
|
<!-- 标题 --> |
|
<h1 align="center">ChatYuan-7B-merge</h1> |
|
|
|
<!-- 图标 --> |
|
<p align="center"> |
|
<a href="https://space.bilibili.com/28606893?spm_id_from=333.1007.0.0"> |
|
bilibili |
|
</a> |
|
<a href="https://github.com/tiansztiansz"> |
|
github |
|
</a> |
|
<a href="https://www.kaggle.com/tiansztianszs"> |
|
kaggle |
|
</a> |
|
<a href="https://huggingface.co/tiansz"> |
|
huggingface |
|
</a> |
|
</p> |
|
|
|
<!-- 项目介绍 --> |
|
<p align="center">Based on LLAMA's latest Chinese-English dialogue language large model</p> |
|
|
|
<br> |
|
|
|
You can see more detail in this [repo](https://github.com/clue-ai/ChatYuan-7B) |
|
|
|
<br> |
|
|
|
## How to use |
|
```python |
|
from transformers import LlamaForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
ckpt = "tiansz/ChatYuan-7B-merge" |
|
device = torch.device('cuda') |
|
model = LlamaForCausalLM.from_pretrained(ckpt) |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt) |
|
|
|
def answer(prompt): |
|
prompt = f"用户:{prompt}\n小元:" |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
generate_ids = model.generate(input_ids, max_new_tokens=1024, do_sample = True, temperature = 0.7) |
|
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
response = output[len(prompt):] |
|
return response |
|
|
|
result = answer("你好") |
|
print(result) |
|
``` |
|
|
|
<br> |
|
int8: |
|
|
|
```python |
|
from transformers import LlamaForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
ckpt = "tiansz/ChatYuan-7B-merge" |
|
device = torch.device('cuda') |
|
max_memory = f'{int(torch.cuda.mem_get_info()[0]/1024**3)-1}GB' |
|
n_gpus = torch.cuda.device_count() |
|
max_memory = {i: max_memory for i in range(n_gpus)} |
|
model = LlamaForCausalLM.from_pretrained(ckpt, device_map='auto', load_in_8bit=True, max_memory=max_memory) |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt) |
|
|
|
def answer(prompt): |
|
prompt = f"用户:{prompt}\n小元:" |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
generate_ids = model.generate(input_ids, max_new_tokens=1024, do_sample = True, temperature = 0.7) |
|
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
response = output[len(prompt):] |
|
return response |
|
|
|
result = answer("你好") |
|
print(result) |
|
``` |
|
|
|
<br> |
|
|
|
## License |
|
- [ChatYuan-7B](https://github.com/clue-ai/ChatYuan-7B) |
|
- [llama](https://github.com/facebookresearch/llama) |