--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer - asr - Portugal - portuguese datasets: - common_voice_16_1 metrics: - wer model-index: - name: w2v-bert-2.0-pt_pt_v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: pt split: validation args: pt metrics: - name: Wer type: wer value: 0.08315087821729188 --- # w2v-bert-2.0-pt_pt_v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset using 1XRTX 3090. It achieves the following results on the test set: - Wer: 0.0915 - Cer: 0.0264 - Bert Score: 0.9702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bert Score | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:| | 1.2735 | 1.0 | 678 | 0.2292 | 0.1589 | 0.0415 | 0.9498 | | 0.1715 | 2.0 | 1356 | 0.1762 | 0.1283 | 0.0344 | 0.9599 | | 0.1158 | 3.0 | 2034 | 0.1539 | 0.1100 | 0.0298 | 0.9646 | | 0.0821 | 4.0 | 2712 | 0.1362 | 0.0949 | 0.0258 | 0.9703 | | 0.0605 | 5.0 | 3390 | 0.1349 | 0.0860 | 0.0236 | 0.9728 | | 0.0475 | 6.0 | 4068 | 0.1395 | 0.0871 | 0.0239 | 0.9728 | | 0.0355 | 7.0 | 4746 | 0.1487 | 0.0837 | 0.0230 | 0.9739 | | 0.0309 | 8.0 | 5424 | 0.1452 | 0.0873 | 0.0240 | 0.9728 | | 0.0308 | 9.0 | 6102 | 0.1390 | 0.0843 | 0.0228 | 0.9735 | | 0.0239 | 10.0 | 6780 | 0.1282 | 0.0832 | 0.0224 | 0.9739 | ### Evaluation results | Test Wer | Test Cer | Test Bert Score | Runtime | Samples per second | |:------------------:|:-------------------:|:-----------------:|:-------:|:---------------------:| | 0.09146400542583083| 0.02643665913309742 | 0.9702128323433327| 266.8185| 35.282 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.2