--- base_model: mlx-community/llm-jp-3-3.7b-instruct language: - en - ja library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - mlx - mlx programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript inference: false --- # thr3a/llm-jp-3-3.7b-instruct-mlx The Model [thr3a/llm-jp-3-3.7b-instruct-mlx](https://huggingface.co/thr3a/llm-jp-3-3.7b-instruct-mlx) was converted to MLX format from [mlx-community/llm-jp-3-3.7b-instruct](https://huggingface.co/mlx-community/llm-jp-3-3.7b-instruct) using mlx-lm version **0.18.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("thr3a/llm-jp-3-3.7b-instruct-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```