--- license: apache-2.0 # (Or another license like MIT) datasets: ["custom-dataset", "neo4j-cypher"] # Mention relevant datasets language: ["en"] # Language(s) the model supports metrics: ["bleu", "exact_match"] # Metrics used for evaluation base_model: "meta-llama/Meta-Llama-3-8B" # If fine-tuned from an existing model new_version: "1.0.0" # Specify the version number pipeline_tag: "text2text-generation" # Pipeline type library_name: "transformers" # Library used for inference tags: - cypher - graph-database - neo4j - text-generation --- # 🚀 My Graph Query Model (LLM for Cypher Queries) This model generates **Cypher queries** for **Neo4j** based on text-based instructions. ## 📚 Datasets - The model was trained on a custom dataset containing **structured graph data** and **Cypher queries**. ## ⚙️ Model Details - **Base Model**: `Meta-Llama-3-8B` - **Fine-Tuned On**: Custom dataset of graph queries - **Tokenization**: SentencePiece - **Training Framework**: `transformers` with `UnsLoT` optimization ## 🏆 Evaluation Metrics - **BLEU Score**: `0.80` - **Exact Match Score**: `66.57%` ## 📥 How to Use the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("thilaksai04/text2cypher-llama3.1-8b") tokenizer = AutoTokenizer.from_pretrained("thilaksai04/text2cypher-llama3.1-8b") input_text = "Find all guidelines related to diabetes treatment" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs) print(tokenizer.decode(output[0], skip_special_tokens=True))