File size: 1,883 Bytes
c307364 1c1080d c307364 aecd128 c307364 aecd128 c307364 aecd128 c307364 aecd128 c307364 9d9e9e6 c307364 1c1080d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base-google-fleurs-pt-br
results: []
datasets:
- google/fleurs
language:
- pt
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-google-fleurs-pt-br
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4063
- Wer: 21.6112
- Wer Normalized: 18.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.05e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 80
- training_steps: 800
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:|
| 0.6738 | 0.5 | 100 | 0.3943 | 21.7334 | 17.9487 |
| 0.4816 | 1.01 | 200 | 0.3762 | 20.9203 | 17.1352 |
| 0.2652 | 1.51 | 300 | 0.3872 | 21.1882 | 17.2827 |
| 0.2901 | 2.01 | 400 | 0.3912 | 21.4608 | 17.7061 |
| 0.1408 | 2.51 | 500 | 0.4063 | 21.6112 | 18.0010 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1
- Datasets 2.16.1
- Tokenizers 0.15.0 |