metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- arrow
metrics:
- wer
model-index:
- name: whisper-small-indian_eng
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: arrow
type: arrow
config: default
split: validation
args: default
metrics:
- name: Wer
type: wer
value: 15.730337078651685
whisper-small-indian_eng
This model is a fine-tuned version of openai/whisper-small on the arrow dataset. It achieves the following results on the evaluation set:
- Loss: 0.7367
- Wer: 15.7303
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5156 | 10.0 | 50 | 1.0266 | 19.1011 |
0.171 | 20.0 | 100 | 0.7371 | 16.8539 |
0.0018 | 30.0 | 150 | 0.6975 | 15.7303 |
0.0004 | 40.0 | 200 | 0.7367 | 15.7303 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.0.0
- Datasets 2.16.1
- Tokenizers 0.19.1