--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 36.7566 --- # bart-large-cnn-pubmed1o3 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 1.9359 - Rouge1: 36.7566 - Rouge2: 14.813 - Rougel: 22.4693 - Rougelsum: 33.4325 - Gen Len: 138.7332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:| | 2.028 | 1.0 | 19988 | 1.9359 | 36.7566 | 14.813 | 22.4693 | 33.4325 | 138.7332 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1