--- license: afl-3.0 tags: - generated_from_trainer model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50 results: [] datasets: - thean/THFOOD-50 widget: - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/FriedChicken.jpg example_title: Fried Chicken - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/Dumpling.jpg example_title: Dumpling - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/CurriedFishCake.jpg example_title: Curried Fish Cake - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/MasssamanGai.jpg example_title: Masssaman Gai - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/EggsStewed.jpg example_title: Eggs Stewed - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/KhanomJeenNamYaKati.jpg example_title: Khanom Jeen Nam Ya Kati - src: >- https://huggingface.co/datasets/thean/sample_images/resolve/main/GaengJued.jpg example_title: Gaeng Jued metrics: - accuracy library_name: transformers --- # swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the [THFOOD-50](https://huggingface.co/datasets/thean/THFOOD-50) dataset. It achieves the following results on the: Train set - Loss: 0.1669 - Accuracy: 0.9557 Validation set - Loss: 0.2535 - Accuracy: 0.9344 Test set - Loss: 0.2669 - Accuracy: 0.9292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6558 | 0.99 | 47 | 3.1956 | 0.28 | | 1.705 | 1.99 | 94 | 1.1701 | 0.6787 | | 0.9805 | 2.98 | 141 | 0.6492 | 0.8125 | | 0.7925 | 4.0 | 189 | 0.4724 | 0.8644 | | 0.6169 | 4.99 | 236 | 0.4129 | 0.8738 | | 0.5343 | 5.99 | 283 | 0.3717 | 0.8825 | | 0.5196 | 6.98 | 330 | 0.3654 | 0.8906 | | 0.5059 | 8.0 | 378 | 0.3267 | 0.8969 | | 0.4432 | 8.99 | 425 | 0.2996 | 0.9081 | | 0.3819 | 9.99 | 472 | 0.3056 | 0.9087 | | 0.3627 | 10.98 | 519 | 0.2796 | 0.9213 | | 0.3505 | 12.0 | 567 | 0.2753 | 0.915 | | 0.3224 | 12.99 | 614 | 0.2830 | 0.9206 | | 0.3206 | 13.99 | 661 | 0.2797 | 0.9231 | | 0.3141 | 14.98 | 708 | 0.2569 | 0.9287 | | 0.2946 | 16.0 | 756 | 0.2582 | 0.9319 | | 0.3008 | 16.99 | 803 | 0.2583 | 0.9337 | | 0.2356 | 17.99 | 850 | 0.2567 | 0.9281 | | 0.2954 | 18.98 | 897 | 0.2581 | 0.9319 | | 0.2628 | 19.89 | 940 | 0.2535 | 0.9344 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3