--- language: - nl license: apache-2.0 base_model: bert-base-uncased tags: - abc - generated_from_trainer datasets: - stsb_multi_mt model-index: - name: bert-base-uncased-FinedTuned results: [] --- # bert-base-uncased-FinedTuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stsb_multi_mt dataset. It achieves the following results on the evaluation set: - Loss: 2.7638 - Pearson: 0.2339 - Mse: 2.7638 - Custom Accuracy: 0.2603 - Dataset Accuracy: 0.1762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Mse | Custom Accuracy | Dataset Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:------:|:---------------:|:----------------:| | 0.0219 | 5.5556 | 1000 | 2.8140 | 0.2324 | 2.8140 | 0.2437 | 0.1762 | | 0.0195 | 11.1111 | 2000 | 2.9679 | 0.2078 | 2.9679 | 0.2618 | 0.1762 | | 0.0184 | 16.6667 | 3000 | 2.7712 | 0.2476 | 2.7712 | 0.2683 | 0.1762 | | 0.0213 | 22.2222 | 4000 | 2.7564 | 0.2486 | 2.7564 | 0.2661 | 0.1762 | | 0.0222 | 27.7778 | 5000 | 2.8691 | 0.2333 | 2.8691 | 0.2596 | 0.1762 | | 0.0151 | 33.3333 | 6000 | 2.7762 | 0.2451 | 2.7762 | 0.2560 | 0.1762 | | 0.0318 | 38.8889 | 7000 | 2.8121 | 0.2370 | 2.8121 | 0.2647 | 0.1762 | | 0.0616 | 44.4444 | 8000 | 2.8343 | 0.2195 | 2.8343 | 0.2560 | 0.1762 | | 0.0335 | 50.0 | 9000 | 2.8070 | 0.2259 | 2.8070 | 0.2676 | 0.1762 | | 0.0553 | 55.5556 | 10000 | 2.7934 | 0.2330 | 2.7934 | 0.2531 | 0.1762 | | 0.0718 | 61.1111 | 11000 | 2.7822 | 0.2286 | 2.7822 | 0.2603 | 0.1762 | | 0.1741 | 66.6667 | 12000 | 2.7638 | 0.2339 | 2.7638 | 0.2603 | 0.1762 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1