--- language: - tr license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large V2 TR 2 - tgrhn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: tr split: None args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 13.56043956043956 --- # Whisper Large V2 TR 2 - tgrhn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - Wer: 13.5604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1416 | 1.0 | 5241 | 0.1766 | 16.1575 | | 0.0765 | 2.0 | 10482 | 0.1639 | 14.0714 | | 0.0283 | 3.0 | 15723 | 0.1739 | 13.5604 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2