--- license: apache-2.0 tags: - audio - speech - speaker - speaker-recognition - speaker-embedding - speaker-verification - speaker-identification - speaker-encoder - tflite - voice library_name: sidlingvo --- # Conformer based multilingual speaker encoder ## Summary This is a massively multilingual conformer-based speaker recognition model. The model was trained with public data only, using the GE2E loss. Papers: * Multilingual: https://arxiv.org/abs/2104.02125 * GE2E loss: https://arxiv.org/abs/1710.10467 ``` @inproceedings{chojnacka2021speakerstew, title={{SpeakerStew: Scaling to many languages with a triaged multilingual text-dependent and text-independent speaker verification system}}, author={Chojnacka, Roza and Pelecanos, Jason and Wang, Quan and Moreno, Ignacio Lopez}, booktitle={Prod. Interspeech}, pages={1064--1068}, year={2021}, doi={10.21437/Interspeech.2021-646}, issn={2958-1796}, } @inproceedings{wan2018generalized, title={Generalized end-to-end loss for speaker verification}, author={Wan, Li and Wang, Quan and Papir, Alan and Moreno, Ignacio Lopez}, booktitle={International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={4879--4883}, year={2018}, organization={IEEE} } ``` ## Usage Run use this model, you will need to use the `siglingvo` library: https://github.com/google/speaker-id/tree/master/lingvo Since lingvo does not support Python 3.11 yet, make sure your Python is up to 3.10. Install the library: ``` pip install sidlingvo ``` Example usage: ```Python import os from sidlingvo import wav_to_dvector from huggingface_hub import hf_hub_download repo_id = "tflite-hub/conformer-speaker-encoder" model_path = "models" hf_hub_download(repo_id=repo_id, filename="vad_long_model.tflite", local_dir=model_path) hf_hub_download(repo_id=repo_id, filename="vad_long_mean_stddev.csv", local_dir=model_path) hf_hub_download(repo_id=repo_id, filename="conformer_tisid_medium.tflite", local_dir=model_path) enroll_wav_files = ["your_first_wav_file.wav"] test_wav_file = "your_second_wav_file.wav" runner = wav_to_dvector.WavToDvectorRunner( vad_model_file=os.path.join(model_path, "vad_long_model.tflite"), vad_mean_stddev_file=os.path.join(model_path, "vad_long_mean_stddev.csv"), tisid_model_file=os.path.join(model_path, "conformer_tisid_medium.tflite")) score = runner.compute_score(enroll_wav_files, test_wav_file) print("Speaker similarity score:", score) ```