--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - szeged_ner metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: szeged_ner type: szeged_ner config: business split: test args: business metrics: - name: Precision type: precision value: 0.8253343823760818 - name: Recall type: recall value: 0.856326530612245 - name: F1 type: f1 value: 0.8405448717948719 - name: Accuracy type: accuracy value: 0.9829550592277783 --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Precision: 0.8253 - Recall: 0.8563 - F1: 0.8405 - Accuracy: 0.9830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2068 | 1.0 | 511 | 0.0724 | 0.8008 | 0.8237 | 0.8121 | 0.9797 | | 0.0835 | 2.0 | 1022 | 0.0590 | 0.8253 | 0.8563 | 0.8405 | 0.9830 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3