tergel's picture
End of training
dd44d2e verified
metadata
language:
  - mn
base_model: tergel/bert-base-mongolian-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-mongolian-uncased-ner
    results: []

bert-base-mongolian-uncased-ner

This model is a fine-tuned version of tergel/bert-base-mongolian-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1610
  • Precision: 0.8207
  • Recall: 0.8426
  • F1: 0.8315
  • Accuracy: 0.9593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3447 1.0 60 0.1578 0.7339 0.7793 0.7559 0.9468
0.136 2.0 120 0.1348 0.7915 0.8026 0.7970 0.9545
0.0997 3.0 180 0.1325 0.8020 0.8288 0.8152 0.9570
0.0761 4.0 240 0.1351 0.8086 0.8310 0.8196 0.9584
0.0595 5.0 300 0.1396 0.8173 0.8334 0.8253 0.9591
0.0485 6.0 360 0.1455 0.8084 0.8313 0.8197 0.9576
0.0399 7.0 420 0.1548 0.8135 0.8377 0.8254 0.9581
0.0354 8.0 480 0.1586 0.8179 0.8407 0.8292 0.9587
0.0315 9.0 540 0.1599 0.8165 0.8414 0.8288 0.9587
0.0283 10.0 600 0.1610 0.8207 0.8426 0.8315 0.9593

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1