--- language: - en license: apache-2.0 pipeline_tag: text-generation model-index: - name: Fox-1-1.6B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 27.66 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 7.4 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.28 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.79 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.87 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 4.13 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tensoropera/Fox-1-1.6B name: Open LLM Leaderboard --- ## Model Card for Fox-1-1.6B > [!IMPORTANT] > This model is a base pretrained model which requires further finetuning for most use cases. > For a more interactive experience, we > recommend [tensoropera/Fox-1-1.6B-Instruct-v0.1](https://huggingface.co/tensoropera/Fox-1-1.6B-Instruct-v0.1), the > instruction-tuned version of Fox-1. Fox-1 is a decoder-only transformer-based small language model (SLM) with 1.6B total parameters developed by [TensorOpera AI](https://tensoropera.ai/). The model was trained with a 3-stage data curriculum on 3 trillion tokens of text and code data in 8K sequence length. Fox-1 uses Grouped Query Attention (GQA) with 4 key-value heads and 16 attention heads for faster inference. For the full details of this model please read [Fox-1 technical report](https://arxiv.org/abs/2411.05281) and [release blog post](https://blog.tensoropera.ai/tensoropera-unveils-fox-foundation-model-a-pioneering-open-source-slm-leading-the-way-against-tech-giants). ## Benchmarks We evaluated Fox-1 on ARC Challenge (25-shot), HellaSwag (10-shot), TruthfulQA (0-shot), MMLU (5-shot), Winogrande (5-shot), and GSM8k (5-shot). We follow the Open LLM Leaderboard's evaluation setup and report the average score of the 6 benchmarks. The model was evaluated on a machine with 8*H100 GPUs. | | Fox-1-1.6B | Qwen-1.5-1.8B | Gemma-2B | StableLM-2-1.6B | OpenELM-1.1B | |---------------|------------|---------------|----------|-----------------|--------------| | GSM8k | 36.39% | 34.04% | 17.06% | 17.74% | 2.27% | | MMLU | 43.05% | 47.15% | 41.71% | 39.16% | 27.28% | | ARC Challenge | 41.21% | 37.20% | 49.23% | 44.11% | 36.26% | | HellaSwag | 62.82% | 61.55% | 71.60% | 70.46% | 65.23% | | TruthfulQA | 38.66% | 39.37% | 33.05% | 38.77% | 36.98% | | Winogrande | 60.62% | 65.51% | 65.51% | 65.27% | 61.64% | | Average | 47.13% | 46.81% | 46.36% | 45.92% | 38.28% | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tensoropera__Fox-1-1.6B) | Metric |Value| |-------------------|----:| |Avg. | 7.69| |IFEval (0-Shot) |27.66| |BBH (3-Shot) | 7.40| |MATH Lvl 5 (4-Shot)| 1.28| |GPQA (0-shot) | 1.79| |MuSR (0-shot) | 3.87| |MMLU-PRO (5-shot) | 4.13|