training_bilingual
This model was trained from scratch on the RaiBP/openwebtext2-first-30-chunks-ablation-bilingual dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The run_clm.py
script from the transformers library was used. Training was distributed on two NVIDIA Quadro RTX 6000 GPUs:
TORCH_CPP_LOG_LEVEL=INFO NCCL_DEBUG=INFO CUDA_VISIBLE_DEVICES=0,1 nohup python -m torch.distributed.launch \
--nproc_per_node=2 run_clm.py --output_dir="./training_bilingual" \
--model_type="gpt2" \
--config_name="./training" \
--tokenizer_name="./training" \
--dataset_name="RaiBP/openwebtext2-first-30-chunks-ablation-bilingual" \
--do_train \
--per_device_train_batch_size 8 \
--block_size="1024" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="1" \
--logging_steps="500" \
--save_steps="5000" --preprocessing_num_workers="16" \
--gradient_accumulation_steps="4" --report_to="tensorboard" \
--logging_dir="./log_bilingual" > command_bilingual_log.log 2>&1 &
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0
Training results
Evaluation results
Perplexity on random 2000 examples of the target language's Wikipedia dataset, using the code provided in the perplexity docs, with 512 tokes of stride. Baseline is the result from evaluating OpenAI's GPT-2 on the same examples.
Target language | PPL | Baseline PPL |
---|---|---|
en | 40.30453872680664 | 26.562532424926758 |
de | 24.30541229248047 | 56.907039642333984 |
es | 22.53978729248047 | 55.592445373535156 |
fr | 26.614990234375 | 49.69472885131836 |
it | 28.24549674987793 | 75.95120239257812 |
pt | 19.720951080322266 | |
nl | 33.292930603027344 |
The following script was used for evaluation
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from tqdm import tqdm
import random
# Set the seed for reproducibility
random.seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
model_name = "RaiBP/gpt2-openwebtext2-first-30-chunks-ablation-bilingual"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
target_language_dataset = "20231101.de" # change here for other languages
dataset = load_dataset("wikimedia/wikipedia", target_language_dataset, split="train")
num_examples = 2000
random_numbers = list(np.random.randint(0, len(dataset), num_examples))
examples = []
for i in tqdm(random_numbers):
examples.append(dataset[int(i)]["text"])
encodings = tokenizer("\n\n".join(examples), return_tensors="pt")
max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, seq_len, stride)):
end_loc = min(begin_loc + max_length, seq_len)
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
# loss is calculated using CrossEntropyLoss which averages over valid labels
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
# to the left by 1.
neg_log_likelihood = outputs.loss
nlls.append(neg_log_likelihood)
prev_end_loc = end_loc
if end_loc == seq_len:
break
ppl = torch.exp(torch.stack(nlls).mean())
print("Perplexity: ", ppl.item())
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 1.13.0
- Datasets 2.16.0
- Tokenizers 0.15.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.