./600
This model is a fine-tuned version of openai/whisper-medium.en on the 600 SF 1000 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6509
- Wer Ortho: 30.9402
- Wer: 20.0933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 800
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
1.6008 | 2.6667 | 100 | 1.0986 | 41.0350 | 29.9605 |
0.8522 | 5.3333 | 200 | 0.7925 | 32.0335 | 21.0621 |
0.6516 | 8.0 | 300 | 0.7207 | 30.5029 | 19.9856 |
0.5337 | 10.6667 | 400 | 0.6885 | 30.5758 | 20.3803 |
0.4489 | 13.3333 | 500 | 0.6709 | 31.0496 | 20.3086 |
0.4003 | 16.0 | 600 | 0.6577 | 31.0496 | 20.2727 |
0.3588 | 18.6667 | 700 | 0.6533 | 31.0496 | 20.0933 |
0.3499 | 21.3333 | 800 | 0.6509 | 30.9402 | 20.0933 |
Framework versions
- Transformers 4.44.0
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 13
Model tree for Makkoen/whisper-medium.en-cit-do015-wd0-lr1e-06-SF-600
Base model
openai/whisper-medium.en